方法:在先前的受试者内部,横断面研究中,我们评估了PD患者对Sleep acroarchitectural特征的低(60 Hz)和常规高(≥130Hz)频率STN DBS设置的影响。在本期,探索性分析中,我们进行了多个核能(PSG)衍生的定量脑电图(QEEG)评估,其中15名患有PD的人在研究参与前13.5个月接受了STN DBS治疗的PD患者。14名参与者的单侧DB和1个具有双侧DBS。在三个不同的PSG连续晚上,在三种不同的DBS条件下评估了参与者:DBS OFF,DBS低频(60 Hz)和DBS高频(≥130Hz)。这项研究的主要目的是使用反复测量方差分析来研究三个DBS条件下睡眠纺锤体密度的变化。此外,我们研究了与睡眠QEEG功能相关的各种次要结果。对于所有参与者,PSG派生的EEG数据进行了精心的手动检查,排除了受运动伪像影响的任何段。在伪影排斥反应后,对额叶和中心线进行了睡眠QEEG分析。措施包括慢波(SW)和主轴密度和形态特征,SW主轴相位振幅耦合以及在非快速眼运动(NREM)睡眠期间的光谱功率分析。
睡眠期间,大脑继续对环境刺激做出选择性反应。然而,这种反应的功能作用,以及它们是否反映了信息处理或感觉抑制,尚不完全清楚。在这里,我们向 17 位人类睡眠者(14 位女性)展示了他们自己的名字和两个陌生的名字,这些名字由熟悉的声音(FV)或陌生的声音(UFV)说出,同时在整晚的睡眠期间记录多导睡眠图。我们检测 K 复合体、睡眠纺锤波和微觉醒,并评估事件相关和频率反应以及对非快速眼动 (NREM) 睡眠期间呈现的不同刺激的试验间相位同步。我们表明,UFV 比 FV 引发更多的 K 复合体和微觉醒。当两种刺激都引起 K 复合波时,我们观察到更大的诱发电位、δ 波段(1 – 4 Hz)大脑反应更精确的时间锁定以及对 UFV 而非 FV 的高频(>16 Hz)范围的活动。至关重要的是,当听觉刺激不引起 K 复合波时,这些大脑反应差异会完全消失。我们的研究结果强调了大脑对听觉刺激的反应因与睡眠者的相关性而存在差异,并提出 K 复合波在睡眠期间调节感觉处理方面起着关键作用。我们认为,这种对外部感官信息内容特定的动态反应使大脑进入哨兵处理模式,在这种模式下,大脑参与睡眠期间正在进行的重要内部过程,同时仍保持处理重要外部感官信息的能力。
摘要 — 在非快速眼动 (NREM) 睡眠期间对脑电图慢波 (SW) 进行听觉刺激,当其在 SW 的上行阶段进行时,已被证明可以改善认知功能。对于 SW 幅度较低的受试者,如老年人或患有帕金森病 (PD) 等神经退行性疾病的患者,SW 增强尤其可取。然而,现有的估计上行阶段的算法在低脑电图幅度和 SW 频率不恒定时存在相位精度较差的问题。我们介绍了两种用于在自主可穿戴设备上实时估计脑电图相位的新算法。这些算法基于锁相环 (PLL) 和首次基于相位声码器 (PV)。我们将这些相位跟踪算法与简单的幅度阈值方法进行了比较。优化后的算法在相位精度、估计 SW 幅度在 20 到 60 µV 之间以及 SW 频率高于 1 Hz 的相位的能力方面进行了基准测试,这些记录来自健康的老年人和 PD 患者。此外,这些算法在可穿戴设备上实现,并在模拟睡眠脑电图以及对 PD 患者的前瞻性记录过程中评估了计算效率和性能。所有三种算法都在 SW 上行阶段提供了 70% 以上的刺激触发。PV 在瞄准低幅度 SW 和频率高于 1 Hz 的 SW 时表现出最高能力。实时硬件测试表明,PV 和 PLL 对微控制器负载的影响都很小,而 PV 的效率比 PLL 低 4%。主动听觉刺激不会影响相位跟踪。这项工作表明,在低幅度 SW 人群中,也可以在家庭睡眠干预期间使用可穿戴设备提供相位精确的听觉刺激。
1.1睡眠研究功能近红外光谱(FNIRS)的FNIR主要用于清醒人群,但对其对睡眠研究的潜力越来越兴趣。睡眠有很大的潜力成为FNIRS的新用例,但是新方法的发展(分析和实际上)都是至关重要的。例如,一些成人研究表明,不同的睡眠阶段表现出不同的氧合水平,如FNIRS 1所评估,并且在睡眠与饮用过渡之前进行了氧化(HBO)和脱氧(HBR)血红蛋白脱氧。在睡眠阶段之间的2个过渡伴随着HBR的增加,当过渡到更深的睡眠阶段,并且在过渡到更轻的睡眠阶段和唤醒的过渡中HBO的增加。3通过Metz等人发现了类似的结果。在青少年中。4 fnirs也已用于新生儿研究,用于睡眠研究,并在发育功能连通性研究中,通常是在睡眠婴儿上进行的,因为数据易于获取(例如,参考文献。5 - 7)。例如,Lee等人。比较了活跃和安静的睡眠状态下的静息状态连接性(即,在健康的新生儿中,后来出现的快速眼动(REM)和非比型眼运动(NREM)睡眠的前体。8他们在积极的睡眠期间显示出更大的远距离连接性,在安静的睡眠期间的短程连接性更高,这与成人研究的结果一致,其连通性模式因睡眠阶段而异。9对成人进行了使用FNIRS和脑电图的功能连通性进行了第一项研究,对成人进行了睡眠状态,并揭示,随着睡眠更深(与N1睡眠相比,N2阶段与N2相比),网络连通性降低了,作者解释说,这反映了这一反映了睡眠成人对环境的减少的反应。9总而言之,在睡眠期间使用FNIRS可以提供有关睡眠的生理和功能的有用信息(即,不同的睡眠阶段如何有助于无法捕获连接性的发展)。
摘要我们在睡眠中度过了三分之一的生命,但是由于这种改变的意识状态,它的核心功能仍然是一个谜。睡眠需求随发展阶段而变化。新生儿在睡眠中花费了约85%的时间,这本质上是多重的。逐渐地,这种模式在青少年和成年人中具有单相睡眠的形状,每个阶段的微体系结构都会变化。成人的睡眠剥夺会损害学习和记忆,并在睡眠期间降低海马和杏仁核之间的theta连贯性。然而,怀孕期间的睡眠损失会影响网络的本体发育发展,以进行睡眠 - 清醒和后代的认知发展。即使在正常怀孕期间,睡眠质量差,快速眼动(REM)睡眠减少和睡眠碎片也是妊娠的最后三个月的常见观察。Delta Power,这是体内稳态驱动的标记,在怀孕和产后的最后三个月的NREM睡眠中增加了。但是,怀孕后期的进一步睡眠流失是一个日益关注的问题。源于全部睡眠限制的大坝出生的新生儿表现出其情绪发育的重大变化(多动症的症状,周围杂色的冒险行为增加)和不成熟的睡眠 - 觉醒模式。妊娠晚期的REM睡眠限制引起了新生儿的抑郁症状,直到中年。尽管睡眠对于活跃的大脑至关重要(对于白天的工作),但它仍然是一种低估的现象。对于大脑和身体的健康发展,对与年龄和状态有关的睡眠动态性质(怀孕)的透彻理解有助于防止上述产前起源的条件。本评论重点介绍了在怀孕期间睡眠的重要性对于后代健康的大脑网络编程。
睡眠持续时间和时机以及相应的脑电图活动反映了大脑的变化,这些变化支持认知和行为成熟,并可能为跟踪典型和非典型神经发育提供实际标记。为了建立和评估一个基于睡眠的大脑成熟度定量指标,我们使用了整夜的多聚会学数据,最初来自两个大型国家睡眠研究资源样本,跨越了儿童和青春期(总n = 4,013,年龄为2.5至17.5岁) (NCH)睡眠数据库,一个儿科睡眠诊所队列。在没有神经发育障碍的儿童(NDD)中,源自脑电图(EEG)的睡眠指标(EEG)在整个数据集中始终显示出与年龄相关的强大变化。在非比型眼运动(NREM)睡眠期间,纺锤体和缓慢的振荡进一步表现出特征性的发育模式,其发生率,时间耦合和形态。基于NCH中的这些指标,我们构建了一个模型来预测个人的年代年龄。模型以高精度执行(在持有的NCH样品中r = 0.93,在第二个独立复制样本中r = 0.85 - 小儿腺苷酸切除术试验(PATS))。总体而言,我们的结果表明睡眠体系结构为表征大脑成熟的敏感窗口提供了敏感的窗口,这表明了可扩展的,客观的基于睡眠的生物标志物来测量神经发育。基于EEG的年龄预测反映了临床上有意义的神经发育差异;例如,NDD儿童在预测的年龄中显示出更大的变异性,与年龄相匹配的非NDD儿童相比,患有唐氏综合症或智障儿童的大脑年龄预测(分别比其年代年龄少2.1和0.8岁)明显年轻。
摘要:去甲肾上腺素 (NE) 在塑造行为结果方面起着不可或缺的作用,包括焦虑/抑郁、恐惧、学习和记忆、注意力和转移行为、睡眠-觉醒状态、疼痛和成瘾。然而,尚不清楚 NE 释放失调是这些行为适应不良取向的原因还是结果,其中许多与精神疾病有关。为了解决这个问题,我们使用了一种独特的遗传模型,其中大脑特异性囊泡单胺转运体-2 (VMAT2) 基因表达在 NE 阳性神经元中被去除,从而禁用整个大脑中的 NE 释放。我们通过将 floxed VMAT2 小鼠与在多巴胺 β -羟化酶 (DBH) 基因启动子下表达 Cre 重组酶的小鼠杂交来设计 VMAT2 基因剪接和 NE 耗竭。在这项研究中,我们对 VMAT2DBHcre KO 小鼠进行了全面的行为和转录组学表征,以评估中枢 NE 在行为调节中的作用。我们证明了 NE 耗竭会产生抗焦虑和抗抑郁样作用,改善情境恐惧记忆,改变转移行为,降低对安非他明的运动反应,并在非快速眼动 (NREM) 阶段诱导更深的睡眠。相反,NE 耗竭不会影响空间学习和记忆、工作记忆、对可卡因的反应以及睡眠-觉醒周期的结构。最后,我们使用此模型来识别在没有 NE 释放的情况下可以上调或下调的基因。我们发现突触囊泡糖蛋白 2c (SV2c) 基因表达在几个大脑区域(包括蓝斑 (LC))中上调,并且能够验证这种上调是长期社交失败脆弱性的标志。NE 系统是一个复杂且具有挑战性的系统,由于它分布在大脑中,因此涉及许多行为取向。在我们的研究中,我们揭示了 NE 神经传递在多种行为中的具体作用,并将其与分子基础联系起来,为未来理解 NE 在健康和疾病中的作用开辟了方向。
目的:定量睡眠脑电图被视为脑电图“指纹”,即它在个体内稳定但个体之间有差异。然而,到目前为止,几乎所有针对这方面的研究都是在年轻男性中进行的。因此,很想知道睡眠脑电图指纹概念是否适用于男女老年人样本。患者和方法:从三个不同子样本(每个子样本 30 名健康个体)获得的数据被重新用于当前的二次分析(年轻男性(YM)= 25.6 ± 2.4 岁,老年男性(EM)= 69.1 ± 5.5 岁,老年女性(EW)= 67.8 ± 5.7 岁)。个体在睡眠实验室中睡了十次,总共进行了 900 个研究夜晚。然而,为了避免因干预相关的睡眠脑电图功率谱变化而导致的误解,仅包括没有任何干预的 3 个假性睡眠夜,将数据集减少到 270 个。为了确定假性睡眠夜对之间 NREM 睡眠脑电图功率谱的稳定性,分别按样本计算受试者内和受试者之间的曼哈顿距离测量值。结果:无论是子样本还是假性睡眠夜对,在受试者内功率谱比较中都观察到最低距离测量值,即最大相似度(EW 的平均距离测量值范围为 3.82 至 4.06,EM 的平均距离测量值范围为 3.55 至 3.63,YM 的平均距离测量值范围为 3.04 至 3.62)。此外,样本之间的个体内相似度没有显着差异。受试者之间的功率谱距离测量值明显较大(EW 的平均距离测量值范围为 12.95 至 13.15,EM 的平均距离测量值范围为 12.21 至 12.57,YM 的平均距离测量值范围为 10.33 至 10.78),且年轻人和老年人之间存在显著差异。结论:本研究结果支持以下观点:睡眠脑电图功率谱是一种类似于个人特征的特征,直到老年仍保持独特性。这一发现可能有助于提高测量干预效果的灵敏度。关键词:睡眠脑电图功率谱、衰老与睡眠、睡眠脑电图的遗传性、脑电图指纹、类似于特征的定量脑电图特征、睡眠脑电图的个体性
项目详细信息项目代码MRCNMH25BR紫色标题使用机器学习来研究细胞组件在处理创伤经历中的作用,并在我们的日常体验和随机时间(包括在睡眠期间)重新激活的神经元的神经科学和神经元的神经科学和心理健康摘要的发展主题神经科学和心理健康汇总组变得活跃。虽然已知这种重新激活对于记忆的处理和巩固很重要,但对这种情况的发生方式鲜为人知。该项目旨在开发机器学习算法,以识别细胞组件并在大鼠的创伤样经历后唤醒和睡眠期间跟踪其重新激活。这将提供有关大脑中创伤经历如何处理以及这如何有助于创伤后应激障碍的发展的基本见解。描述超过80%的人在他们的一生中经历了创伤事件;其中,高达〜10%的创伤后应激障碍(PTSD),遭受令人痛苦的倒叙,回避,高音和噩梦。至关重要的是,目前的疗法无法长期控制约50%的患者。定义了脆弱性PTSD的决定因素和设计新颖的,生物学知情的预防和治疗策略至关重要。睡眠支持日常体验的“离线”处理;因此,它的破坏可能有助于使PTSD的不良适应记忆处理。在非拉比眼运动睡眠(NREM)期间,海马平局序列的重播支持空间记忆的巩固。细胞组件,在时间和功能上组织以编码信息的神经元组,这些信息在学习过程中活跃,在睡眠期间重新激活。这发生在当网络振荡(包括波纹,主轴和慢波)的协调中,优化边缘 - 金属对话,并将内存整合到长期存储中。相比之下,人类研究中有重大证据表明睡眠和theta活动在处理情感记忆和减少情感语气方面起着重要作用。但是,在这种情况下,睡眠重新激活仅部分探索了,没有研究对创伤进行评估。您的项目将涉及计算神经科学和机器学习算法的开发,以优化在PTSD大鼠模型中创伤期间活跃的细胞组件的检测。在创伤暴露期间检测细胞组件和整个时间的跟踪组装重新激活,包括睡眠期间,将提供有关如何处理创伤性记忆的基本见解,从而指出了治疗干预的精确时间和解剖靶标。此外,目前尚无评估与动物中相关的侵入性记忆或噩梦的方法,这都是PTSD的关键症状。尚不清楚睡眠期间与任务相关的活动的重播是否代表事件的有意识回忆,但证据表明重播与记忆检索有关。确定创伤暴露后的装配频率可能揭示脆弱和
睡眠是促进大脑和身体健康的强大系统。研究表明,睡眠在清除有毒副产物 [ 1–3 ]、突触稳态 [ 4 ]、记忆巩固 [ 5–11 ]、代谢 [ 12 ]、心血管功能 [ 13–16 ] 和身体核心组织更新 [ 17 ] 等多种功能中发挥作用。特别是,非快速眼动 (NREM) 睡眠具有大振幅、低频慢波,被认为可以引导这些有益作用(例如,参见参考文献 18 中的综述)。慢波上行阶段反映神经元活动期,慢波下行阶段反映神经元沉默期 [19],从而协调丘脑皮质睡眠纺锤波和海马尖波涟漪之间的时间相互作用,这已被证明可以支持长期记忆保留 [20,21]。尽管如此,慢波是否是维持大脑和身体健康的不可或缺的驱动力,仍在很大程度上尚未得到探索。为了阐明慢波对大脑和身体功能的功能性作用,需要调节这些振荡。在过去的几年里,听觉刺激已经成为一种有前途的、非侵入性的、可行的方法,可以在深度睡眠期间选择性地调节慢波 [9,22–24]。然而,由于刺激方案多种多样,导致对行为结果的发现不一致(例如,参见参考文献25 中的综述),并且缺少对这些方法在选择性增强或减少慢波方面的有效性的比较。Ngo 等人[9] 首次报告,针对正在进行的慢波的上升阶段似乎对改善隔夜记忆巩固很重要。另一方面,下行阶段刺激则会干扰慢波以及陈述性记忆和运动记忆的巩固[9, 26]。然而,除了选择合适的听觉刺激目标阶段外,序列中的刺激数量也是可变的,例如,双音调刺激方案之后是后续刺激中断[9, 23],或窗口方法,其中听觉刺激仅在预定长度的 ON 窗口内呈现[7, 8, 22]。除了上述在一定程度上依赖于慢波相位和/或存在(闭环刺激)的程序外,完全开环听觉刺激也已被证明可以增强慢波[11,27]。需要考虑的另一个参数是刺激的音量以及刺激是通过耳机还是扬声器播放。此外,一些研究使用50至60 dB之间的固定音量[9,23,28],或30至60 dB之间的个体和/或自适应音量[10,11,22]。尽管已经应用了许多刺激方法,但听觉刺激仍处于起步阶段。因此,听觉刺激的全部潜力尚未得到充分挖掘,为此需要对其效果有更深入的了解。此外,目前尚不清楚听觉刺激效果是否在整个睡眠周期内保持稳定,以及刺激效果是否在几秒钟的刺激中保持不变。为了促进对听觉慢波调制的理解,我们在此提出了一种新方法,使用窗口 10 秒刺激开启(播放听觉刺激)然后 10 秒关闭(不播放听觉刺激)方法比较单个睡眠期间的不同听觉刺激条件。这种夜间设计消除了任何