Datalogic很高兴欢迎NRF与会者访问Booth#5639,他们可以在AI驱动的解决方案和扫描边缘技术中体验最新的进步。我们的专家团队将在现场展示这些智能解决方案如何改变当今快节奏的世界中企业运作的方式。不要错过这个机会来了解数据质量如何塑造零售及以后的未来。
摘要:在本文中,使用HSPICE模拟了使用能源有效GNRFET技术的物联网的静态噪声边距(SNM)和SRAM在不同电压供应和静态随机访问记忆的温度下的功耗。此外,已经提出了GNRFET SRAM的各种波形的模拟。SNM存在于SRAM细胞中,这会影响SRAM细胞的读取操作的稳定性。SRAM细胞稳定性分析是一个基于静态噪声边缘(SNM)的研究。在阅读操作过程中,SRAM细胞SNM分析了各种替代方案以提高细胞稳定性。GNRFET的作用提高了其功率效率和速度,在各种物联网应用中在航空工程中起着至关重要的作用。snm是6.7@1v,平均功率为2.24@1v,snm为2.43@45 o C,平均功率为1.25@45 o C.索引条款:GNR,GNRFET,功耗,电池消耗,细胞比率,CMOS,CMOS,PURPIP RATIO,SNM,SNM),Nano-Electronic。
南非国家研究基金会(NRF)和AXA研究基金会合作启动非洲科学进步奖(ASPA)。ASPA打算通过未来的地球非洲枢纽(FEAH)支持非洲大陆早期职业研究的可持续性研究活动。赠款的核心是及时和地区相关的研究见解以及职业增长的产生。该赠款旨在帮助研究人员在各自的领域中建立自己的工作,建立他们的研究概况,并致力于在协作中制定独立和有影响力的研究计划。NRF - AXA研究基金合作伙伴关系的目标是支持非洲早期职业研究的出色科学,并通过以下方式增强了未来地球非洲的使命:
钩端螺旋体是导致钩端螺旋体病的致病细菌,这是一种世界范围内的人畜共患病。所有脊椎动物都可以被感染,某些物种像人类易受疾病的影响,而小鼠等啮齿动物具有抗性并成为无症状的肾载体。诱导性是隐形细菌,已知可以逃避几种免疫识别途径并抵抗杀死机制。我们最近发表说,钩端螺旋体可以在细胞内生存并退出巨噬细胞,避免了Xenophapy,这是一种自噬的病原体靶向形式。有趣的是,后者是经常被细菌KAKE的抗菌机制之一,以逃避宿主的免疫反应。在这项研究中,我们探讨了钩端螺旋体是否颠覆了自噬的关键分子参与者以促进感染。我们在胶噬细胞中表明,钩端螺旋体触发了自噬适应器p62在类似点状结构中的特定积累,而不会改变自噬型号。我们证明了钩端螺旋体诱导的p62积聚是一种被动机制,具体取决于通过TLR4/TLR2信号传导的钩端螺旋力毒力因子LPS信号。p62是一种中央多效性蛋白,也通过转移因子的易位介导细胞应激和死亡。我们证明了瘦素驱动的p62的积累诱导了转录因子NRF2的易位,这是抗氧化剂反应中的关键参与者。然而,钩端螺旋体感染的NRF2易位并未像抗氧化反应中所预期的那样导致,但抑制了炎性介质的生产,例如Inos/NOOS/NO,TNF和IL6。©2023作者。总体而言,这些发现突出了一种与LPS和p62/NRF2信号相关的新型无源细菌机制,该机制减少了炎症并有助于诱导性的隐身性。由Elsevier Masson SAS代表Pasteur Inster出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
在一个快速数字化的世界中,随着美国社会商务销售预计在2025年超过1000亿美元,社会贸易对于吸引年轻消费者的吸引力至关重要。与传统的营销渠道不同,社会贸易在周期性的模型中运作,在这种模型中,发现,互动和购买流程无缝地回到正在进行的参与度中。这种方法优先考虑在一次性交易中建立持久关系,确保品牌仍然是客户日常生活的一部分。
NFE2L2 (NRF2) 致癌基因和转录因子驱动基因表达程序,促进癌症进展、代谢重编程、免疫逃避和放化疗抗性。根据 NRF2 活性对患者进行分层可指导治疗决策以改善结果。在这里,我们开发了一种基于内部标准触发平行反应监测的质谱靶向蛋白质组学检测,以量化 69 种 NRF2 通路成分和靶标,以及 21 种在头颈部鳞状细胞癌 (HNSCC) 中具有广泛临床意义的蛋白质。我们改进了现有的内部标准触发平行反应监测采集算法 SureQuant,以提高吞吐量、灵敏度和精度。在 27 种肺癌和上消化道癌细胞模型上测试优化平台,发现了 35 种 NRF2 反应蛋白。在福尔马林固定石蜡包埋的 HNSCC 中,NRF2 信号强度与 NRF2 激活突变和 SOX2 蛋白表达呈正相关。滤过性 T 细胞的蛋白质标记物彼此呈正相关,并与人乳头瘤病毒感染状态呈正相关。CDKN2A (p16) 蛋白表达与人乳头瘤病毒致癌 E7 蛋白呈正相关,并证实存在翻译活性病毒。这项工作建立了一种临床上可行的 HNSCC 蛋白质生物标志物检测方法,能够在 90 分钟内量化来自冷冻或福尔马林固定石蜡包埋的存档组织中的 600 多种肽。
IntelGaudi®3的内置以太网链接每个都提供200GBPS。8 XGaudi®3模块可以达到4,200GB/s的理论峰带宽,从而消除了后端对外部NIC的需求,同时提供了比专有替代方案更高的骨料带宽。与前端的Intel E810 NIC搭配,系统可确保10/25GBE速度,高级数据包过滤和ROCEV2支持,为外部延迟敏感的数据流量提供可扩展且高性能的网络。newGaudi®3AI加速器提供高达20%的吞吐量和2倍的价格/绩效,以推理Llama 2 70B与领先的竞争对手,赋予企业能力以增强其AI工作量而不损害效率。请参阅Intel®Gaudi®3和Dell PowerEdge XE9680如何共同努力,以支持要求AI计划。
诱导抗氧化蛋白和中和反应性亲电试剂的 2 期解毒酶是防止致癌的重要机制。正常细胞提供多方面的途径来严格控制 NF-E2 相关因子 2 (NRF2) 介导的基因表达,以应对一系列内源性和外源性致癌分子的攻击。NRF2 被其激活剂瞬时激活能够诱导 ARE 介导的细胞保护蛋白,这些蛋白对于防止各种毒性和氧化损伤至关重要,因此 NRF2 激活剂在癌症化学预防中具有功效。由于 NRF2 具有细胞保护功能,它可以像天使一样保护正常细胞免受致癌物的侵害,但当保护作用作用于癌细胞时,它会产生无敌的癌细胞并在肿瘤进展中扮演魔鬼角色。事实上,在多种癌症中都发现了NRF2的异常激活,这为癌细胞的增殖和存活创造了有利的环境,并导致耐药性,最终导致患者的临床预后不良。因此,药物抑制NRF2信号传导已成为一种有前途的癌症治疗方法。本综述旨在汇编NRF2的调控机制及其在癌症中的双刃剑作用。此外,我们还总结了NRF2调节剂,特别是植物化学物质在化学预防和癌症治疗中的研究进展。
此外,还需要进行大规模验证研究以确认新兴分子和技术干预的功效和安全性[45]。纳入现实世界数据和多功能分析的强大临床试验对于建立这些创新方法的临床实用性至关重要,并确保它们成功地转化为常规的患者护理。此外,跨越分子生物学,生物工程和数据科学等多学科专业知识的整合对于有效实施这些综合方法至关重要[46]。在使用先进技术(例如AI,数字双胞胎和机器人生物技术)的使用的道德和监管方面也将是这些变革性解决方案的未来发展和部署的关键方面。