雄心勃勃——我们致力于培养和合作伙伴关系和价值,激励我们所有人实现自己的潜力,并永远解决或第二个问题。有责任——我们怀着勇气或为了更大的利益而行动,维护最高的学术和学术界的声誉,尊重和弘扬包容性文化,并致力于整个社会的可持续发展我们所有的活动。开放——我们积极合作,从新人的角度出发,共享并保持透明度,值得信赖,并倾听我们员工的需求。
能力和设备 • 自动化制造 • 适用于热固性、热塑性、CMC 和干纤维材料系统的自动纤维铺放 (AFP) 和自动带铺设 (ATL)。 • 电冲击系统 1(带激光的 ¼” 和 ½” AFP | 6”、9” 和 12” ATL)– 36' X 轴和 15,000 磅旋转器 • 电冲击系统 2(带可变光斑尺寸激光器的 ¼” 和 ½” AFP)– 72' X 轴、30,000 磅旋转器和双轴旋转器 • 科里奥利系统(¼” AFP)– 26' X 轴 • Mikrosam 双机器人系统(¼” AFP 和 2” ATL)用于免工具制造 – 30' X 轴和纤维缠绕 • 适用于热塑性材料的激光和 Humm3 加热选项 • 用于 AFP 的集成 6 x 20 英尺真空工作台和旋转器 • 带有在线激光检测系统的 Mikrosam 分切复卷机 • 光纤贴片放置 (FPP) –复杂复合材料部件 • KraussMaffei 450 吨旋压成型机,配备双 1400 注射单元和旋转转盘 • 集成聚氨酯 ColorForm 和高压计量系统 • 集成 FiberForm IR 烤箱 • ENGEL V-DUO 1900 美国吨工业压力机,具备热塑性能力 • 集成机器人、(IR) 烤箱、注塑单元和 HP-RTM 系统 • Electroimpact 可扩展机器人增材制造 (SCRAM) • 增材(聚合物和金属)、减材和热塑性 AFP • 5' 直径。垂直旋转器和 5,000 磅水平旋转器(7 英尺直径和 16 英尺构建体积)• 6.5 英尺 x 13 英尺加热构建台和 27 英尺 X 轴 • 带有闭环控制和过程检查的自动热塑性焊接 • 感应、电阻和超声波焊接 • 高压釜 • 13 x 26 英尺,800 华氏度/200 psi 能力 • 集成无线温度传感器和流变仪用于材料状态监控 [可使用 3 x 6 英尺和 6 x 12 英尺 NIAR 高压釜] • 高保真检查 • 双管双探测器 NSI X7000 X 射线 CT 系统 • 微焦点(分辨率高达 5µm)和小焦点 X 射线管;X 射线能量从 10kV 到 450Kv;平板探测器和线性二极管阵列检测技术 • 带负载夹具、引伸计和 DIC 的现场 XCT 扫描 • 能够扫描直径达 60 英寸 x 高 60 英寸的标称扫描范围的大型部件 • ZEISS Xradia 520 Versa 亚微米 3D X 射线 CT 系统 • 160kV 高能微焦点 X 射线源和分期 • 超声波 (MAUS):脉冲回波测试、MIA 测试、共振测试、音高捕捉、相控阵 • 脉冲热成像 • 剪切干涉 • 声发射(16 通道系统) • GOM 和 Vic 3D 数字图像相关系统(微观 5MP 至 29 MP)
OM M.201 职责; 7 OM M.201 ( e ) 职责 8 AMC M.201(e)(2) 职责 8 OM M . 201(f) 商业 ATO 8 OM M.20 1 (i)、M . 3 0 2(h) 和 M.901( l ) 8 OM M . 2 0 1 (i) 航空器维护计划 9 AMC M . 201( i )(3) 职责 9 AMC M.202(a) 事件报告 1 0 AMC M.202( b ) 事件报告 10 AMC M .持续适航任务 10 AMC M.301(b) 持续适航任务 11 AMC M . 301 (c) 持续适航任务 12 AMC M . 301(d) 持续适航任务 12 AMC M.301(e) 持续适航任务 12 AMC M.301(g) 持续适航任务 12 AMC M.302 飞机维修计划 12 OM M.302(a) 飞机维修计划 13 AMC M .飞机维护计划 13 AMC M.302(e) 飞机维护计划 14 AMC M.302(f) 飞机维护计划 17 AMC M.302(h) 飞机维护计划 17 OM M.302(h) 飞机维护计划 18 AMC M.302(i) 飞机维护计划 19 AMC M.304 修改和修理数据 29 AMC M. 305( d ) 飞机持续适航记录系统 29 AMC M.305(d)(4) 和 M.305(h) 飞机持续适航记录系统 29 AMC M.305(h) 飞机持续适航记录系统 30 AMC M.305(h)6 飞机持续适航记录系统 30 AMC M.306(a) 飞机技术日志系统 30 AMC M.306 (b) 飞机技术日志系统 32 AMC M.307 (a) 飞机持续适航记录的移交 32 AMC MA01(b) 维护数据 32 AMC MAO1 (c) 维护数据 33 AMC M.402(a) 维护的执行 3'3 OM MA02(a) 维护的执行 33 AMC MA02(c) 维护的执行 34 AMC MA02(d) 维护的执行 34 AMC MA02(e) 维护的执行 34 AMC MA02(f) 维护的执行 34 AMC MA02(g) 维护的执行 35 AMC1 MA02(h) 维护的执行 35 AMC2 MA02(h) 维护的执行 35 OM MA02(h) 维护的执行 37 AMC MA03(b) 航空器缺陷 37 AMC M. 403(d) 飞机缺陷 37 AMC M.501(a) 安装 37 AMC M.501( b ) 安装 38 AMC M.501(c) 安装 38 AMC M.501(d) 安装 39
OM M.201 职责;7 OM M.20 1 ( e) 职责 8 AMC M.201(e)(2) 职责 8 OM M .201(f) 商业 ATO 8 OM M.20 1 (i), M .3 0 2(h) 和 M.901( l ) 8 OM M .2 0 1 (i) 航空器维修计划 9 AMC M .201( i )(3) 职责 9 AMC M.202(a) 事件报告 1 0 AMC M.202( b ) 事件报告 10 AMC M .30 1 (a) 持续适航任务 10 AMC M.301(b) 持续适航任务 11 AMC M .30 1 (c) 持续适航任务 1 2 AMC M .3 01( d ) 持续适航任务 12 AMC M.301(e) 持续适航任务 12 AMC M .301(g) 持续适航任务 12 AMC M.302 飞机维护计划 12 OM M.3 0 2(a) 飞机维护计划 13 AMC M .3 0 2(d) 飞机维护计划 13 AMC M .302(e) 飞机维护计划 1 4 AMC M .302(f) 飞机维修计划 17 AMC M.302(h) 飞机维修计划 1 7 OM M .3 0 2(h) 飞机维修计划 1 8 AMC M.302(i) 飞机维修计划 19 AMC M.304 修改和修理数据 29 AMC M .305( d ) 飞机持续适航记录系统 29 AMC M.305(d)(4) 和 M.305(h) 飞机持续适航记录系统 29 AMC M.305(h) 飞机持续适航记录系统 30 AMC M.305(h)6 飞机持续适航记录系统 30 AMC M.306(a) 飞机技术日志系统 30 AMC M.306 (b) 飞机技术日志系统 32 AMC M.307 (a) 飞机持续适航记录的移交 32 AMC MA 01( b ) 维护数据 32 AMC MAO 1 (c) 维护维护数据 33 AMC M.402(a) 维护执行 3'3 OM MA02(a) 维护执行 33 AMC MA 0 2( c) 维护执行 34 AMC MA02(d) 维护执行 34 AMC MA 0 2(e) 维护执行 34 AMC MA02(f) 维护执行 34 AMC MA02(g) 维护执行 35 AMC1 MA02( h ) 维护执行 35 AMC2 MA02(h) 维护执行 35 OM MA02(h) 维护执行 3 7 AMC MA 0 3(b) 飞机缺陷 3 7 AMC M .403(d) 飞机缺陷 37 AMC M.501(a) 安装 3 7 AMC M.501( b ) 安装 38 AMC M.50 1(c) 安装 38 AMC M.501(d) 安装 39
OM M.201 职责; 7 OM M.201 ( e ) 职责 8 AMC M.201(e)(2) 职责 8 OM M . 201(f) 商业 ATO 8 OM M.20 1 (i)、M . 3 0 2(h) 和 M.901( l ) 8 OM M . 2 0 1 (i) 航空器维护计划 9 AMC M . 201( i )(3) 职责 9 AMC M.202(a) 事件报告 1 0 AMC M.202( b ) 事件报告 10 AMC M .持续适航任务 10 AMC M.301(b) 持续适航任务 11 AMC M . 301 (c) 持续适航任务 12 AMC M . 301(d) 持续适航任务 12 AMC M.301(e) 持续适航任务 12 AMC M.301(g) 持续适航任务 12 AMC M.302 飞机维修计划 12 OM M.302(a) 飞机维修计划 13 AMC M .飞机维护计划 13 AMC M.302(e) 飞机维护计划 14 AMC M.302(f) 飞机维护计划 17 AMC M.302(h) 飞机维护计划 17 OM M.302(h) 飞机维护计划 18 AMC M.302(i) 飞机维护计划 19 AMC M.304 修改和修理数据 29 AMC M. 305( d ) 飞机持续适航记录系统 29 AMC M.305(d)(4) 和 M.305(h) 飞机持续适航记录系统 29 AMC M.305(h) 飞机持续适航记录系统 30 AMC M.305(h)6 飞机持续适航记录系统 30 AMC M.306(a) 飞机技术日志系统 30 AMC M.306 (b) 飞机技术日志系统 32 AMC M.307 (a) 飞机持续适航记录的移交 32 AMC MA01(b) 维护数据 32 AMC MAO1 (c) 维护数据 33 AMC M.402(a) 维护的执行 3'3 OM MA02(a) 维护的执行 33 AMC MA02(c) 维护的执行 34 AMC MA02(d) 维护的执行 34 AMC MA02(e) 维护的执行 34 AMC MA02(f) 维护的执行 34 AMC MA02(g) 维护的执行 35 AMC1 MA02(h) 维护的执行 35 AMC2 MA02(h) 维护的执行 35 OM MA02(h) 维护的执行 37 AMC MA03(b) 航空器缺陷 37 AMC M. 403(d) 飞机缺陷 37 AMC M.501(a) 安装 37 AMC M.501( b ) 安装 38 AMC M.501(c) 安装 38 AMC M.501(d) 安装 39
OM M.201 职责; 7 OM M.201 ( e ) 职责 8 AMC M.201(e)(2) 职责 8 OM M . 201(f) 商业 ATO 8 OM M.20 1 (i)、M . 3 0 2(h) 和 M.901( l ) 8 OM M . 2 0 1 (i) 航空器维护计划 9 AMC M . 201( i )(3) 职责 9 AMC M.202(a) 事件报告 1 0 AMC M.202( b ) 事件报告 10 AMC M .持续适航任务 10 AMC M.301(b) 持续适航任务 11 AMC M . 301 (c) 持续适航任务 12 AMC M . 301(d) 持续适航任务 12 AMC M.301(e) 持续适航任务 12 AMC M.301(g) 持续适航任务 12 AMC M.302 飞机维修计划 12 OM M.302(a) 飞机维修计划 13 AMC M .飞机维护计划 13 AMC M.302(e) 飞机维护计划 14 AMC M.302(f) 飞机维护计划 17 AMC M.302(h) 飞机维护计划 17 OM M.302(h) 飞机维护计划 18 AMC M.302(i) 飞机维护计划 19 AMC M.304 修改和修理数据 29 AMC M. 305( d ) 飞机持续适航记录系统 29 AMC M.305(d)(4) 和 M.305(h) 飞机持续适航记录系统 29 AMC M.305(h) 飞机持续适航记录系统 30 AMC M.305(h)6 飞机持续适航记录系统 30 AMC M.306(a) 飞机技术日志系统 30 AMC M.306 (b) 飞机技术日志系统 32 AMC M.307 (a) 飞机持续适航记录的移交 32 AMC MA01(b) 维护数据 32 AMC MAO1 (c) 维护数据 33 AMC M.402(a) 维护的执行 3'3 OM MA02(a) 维护的执行 33 AMC MA02(c) 维护的执行 34 AMC MA02(d) 维护的执行 34 AMC MA02(e) 维护的执行 34 AMC MA02(f) 维护的执行 34 AMC MA02(g) 维护的执行 35 AMC1 MA02(h) 维护的执行 35 AMC2 MA02(h) 维护的执行 35 OM MA02(h) 维护的执行 37 AMC MA03(b) 航空器缺陷 37 AMC M. 403(d) 飞机缺陷 37 AMC M.501(a) 安装 37 AMC M.501( b ) 安装 38 AMC M.501(c) 安装 38 AMC M.501(d) 安装 39
在他的及其配套论文中,我们展示了量子场理论,其具有高对称性,允许比我们假设的更广泛的经典动力学类型。在这篇文章中,我们展示了从模式积分或哈密顿和广义相对论公式中提取的动力学允许不满足爱因斯坦全套方程的经典状态。这个量取决于哈密顿对初始状态施加的动量约束。尽管如此,量子场论仍然允许测量这些状态随时间的变化。这些状态随时间演变,以致在经典层面上,全套爱因斯坦方程似乎成立,而这些状态的物理效应可归因于辅助的、协变的、能量矩张力守恒,或者没有内部自由度。我们推导出这些状态的广义爱因斯坦方程,并表明在均匀和等向性的初始背景基态中,对相同高程分量的扩展有贡献。此状态的非均匀分量可能源于按线性级数线性增长的曲率扰动。这个对爱因斯坦方程的辅助贡献可能会为我们提供一种破坏零能条件的简单方法,从而实现诸如宇宙的引力动力学。弹跳 andw 或 mh oles。
自发性使生命变得有价值。如果我们对每个问题都有答案,并且能够在走向未来的特定道路之前准确地预测我们的行动和选择的结果,人类的生活将会大不相同——有些人甚至可能会说是不同的。我们必须自己努力,犯错误,并向错误中学习,这一事实提供了一定程度的自由,但我们任何人都不应认为这是理所当然的。我们不久前才有机会驾驶一辆可以直达街道的汽车,或者绕着街道跑一圈,第一次尝试一条新路线,而不是直接选择最短的路线,然后依靠这条路线到达目的地。虽然我们都对现在能够如此轻松地环游世界感到欣慰,但这里也存在一个可能的成本增加——自动参数 x。我们现在能够以无摩擦的方式进行交易,从而推动我们无法保持的反应。在发送或接收信息之前,身体动作的消除意味着我们的思考和信息消耗时间减少了。但如果这还不够的话,我们现在还以“自助服务”承诺的性能增益的名义,消除了人机交互,转而支持机器响应。作为我们称之为数字化转型的条件的一部分,人们已经放弃了呼叫中心的人类操作员,转而支持在线聊天机器人。曾经依赖于自己或工作或游戏的同理心人际杀戮现在或成为预测性在线互动的一部分。曾经令人钦佩的表达语言现在已经让位于一些WW或DS。虽然这可能被认为是细胞体效率的新水平,但很少有人会不同意我们已经失去了人类本质的一些东西,尽管我们在交易绩效中感知到了所有的收获。因。为了实现人类的梦想,我们每个人都训练着与云端相连的机器,以相似的心态行动:像我们一样思考,使用我们的语言和言语,而不考虑它的偏见和成见,所有这些都是在按下按钮的推动下进行的。更有趣的是,当算法和大数据引擎使用自动数据收集机来观看手部监听我们的声音时,可能会,甚至间接地。有了位置和条件信息等额外参数,能够看到某人的面部表情,甚至听到他们说话的语气或内容,可能就足以驱动分析引擎来确定某人是快乐还是悲伤,是否真的容易激动,甚至是否处于特定情况的“危险之中”。可以预先假设个人会采取先发制人的行动,而这些个人可能会以自然的倾向进行干预,