处理 GPS PPS 信号的 GNSS 接收器包含政府提供的设备 (GFE) 元素,相关文件不允许直接证明符合民用要求(例如EASA ETSO-C196)。尽管如此,从基于性能的指标得出的民用要求允许考虑比例感,因此可以应用可以证明接收器性能等效合规性的方法,同时将 GFE 元素视为“黑匣子”。从这个意义上讲,根据民用标准(RTCA DO-178B / EUROCAE ED-12B;DO-254 / ED-80)进行的设计保证也必须在比例原则的基础上进行。
有效载荷 • 基于 TDS-1 和 CYGNSS 任务中飞行的仪器的新型 GNSS-R 仪器 • 天底天线 ~13 dBi 双极化、双频 • 与伽利略和 GPS 兼容的仪器,可在轨道上重新配置,支持新的 GNSS-R 测量平台 • 65 千克 SSTL 微型卫星,双冗余核心航空电子设备 • 2.5 年使用寿命加上 2 年延长 • 灵活的星跟踪器姿态,氙气推进 • 双冗余 X 波段 200Mbps 下行链路地面段 • 英国吉尔福德的有效载荷数据地面段 (PDGS) • 基于 www.merrbys.org 传播 1 级、2 级数据 • 端到端模拟器演示为有效载荷设计提供信息 • SSTL 主要工作,由科学团队成员支持 • 运营和所有科学数据产品质量服务交付将由 SSTL 从吉尔福德发射和星座部门进行 • SSTL 采购发射和管理发射活动 • 选择相同的第二颗卫星来增强该计划的科学回报,尤其有利于动态地球物理过程。 • 未来的 HydroGNSS 卫星可以以较低的重建成本添加到该星座中
人工智能算法在 GNSS 中执行的可能性 Darshna Jagiwala(1)、Shweta N. Shah(2) (1) 女科学家,DST (2) 助理教授,SVNIT,印度 摘要 大量研究验证了在全球导航卫星系统 (GNSS) 领域使用人工智能 (AI) 算法的机会。实现智能有两种方式:一种是通过机器学习 (ML),另一种是通过深度学习 (DL)。最常见的是,支持向量机 (SVM) 和卷积神经网络 (CNN) 是人工智能的重要算法,在文献中用于提高 GNSS 系统的定位精度。本文通过考虑 GNSS 接收器在射频 (RF) 前端级别、预相关级别、后相关级别和导航级别的不同阶段来进行文献综述,这将更好地理解 AI 在该领域的实施。主要研究工作是在后相关阶段进行的,其中使用了不同的数据格式,如相关输出、国家海洋电子协会 (NMEA) 数据和接收器独立交换格式 (RINEX) 数据。除此之外,本文还讨论了与 AI 算法应用相关的威胁和风险因素。1.简介 GNSS 使用精确的定时信息、定位和同步技术提供全球和实时服务。目前,美国的全球定位系统(GPS)、俄罗斯的全球导航卫星系统(GLONASS)、欧洲的伽利略(GALILEO)和中国的北斗卫星导航系统(BDS)是全面运行的GNSS系统。此外,印度的印度星座导航(NavIC)和日本的准天顶卫星系统(QZSS)都是独立自主的区域导航系统。近年来,GNSS应用越来越精确,其精确度为广泛的应用打开了大门。[1]。卫星导航系统是根据发现的物理定律设计的[2]。• GNSS系统背后的基本思想是卫星在太空中传输信号。在这里,卫星在轨道上的位置遵循开普勒行星运动定律。• 这些信号由地球表面或附近的接收器接收。扩频技术用于获取从地球轨道发射的非常微弱的卫星信号。
斐济国家航空法由三层或三重体系监管体系组成,包括法案、法规和标准文件;其目的是确保在适当情况下遵守和符合国际民航组织的标准和建议措施 (SARPS)。“三层”或“三重体系”监管体系代表斐济的主要立法体系和具体操作规章,以满足国际民航组织安全监督体系八个关键要素中的关键要素 CE1 和 CE2。标准文件 (SD) 由斐济民航局根据 1979 年民航局法 (CAP 174A) 第 14 (3) (b) 条的规定颁发。在适当情况下,SD 还包含有关民航局可接受的标准、措施和程序的技术指导(关键要素 CE5)。尽管有上述规定,并且如果本标准文件明确指出有此类规定,则可以考虑向管理局提交其他合规方法,前提是这些方法具有补偿因素,可以证明其安全水平相当于或优于本文规定的安全水平。因此,管理局将根据每个案例的实际情况,综合考虑替代方法对个别申请人的相关性。当确定新标准、做法或程序可以接受时,它们将被添加到本文件中。
斐济国家航空法由三级或三重系统监管体系组成,包括法案、法规和标准文件;其目的是确保在适当情况下遵守和符合国际民航组织的标准和建议措施 (SARPS)。“三级”或“三重系统”监管体系代表斐济的主要立法体系和具体操作规章,以满足国际民航组织安全监督体系八个关键要素中的关键要素 CE1 和 CE2。标准文件 (SD) 由斐济民航局根据 1979 年民航局法案 (CAP 174A) 第 14 (3) (b) 节的规定颁发。在适当情况下,SD 还包含有关当局可接受的标准、措施和程序的技术指导(关键要素 CE5)。尽管有上述规定,并且如果本标准文件中明确指出有此类规定,则可以考虑向管理局提交其他合规方法,前提是这些方法具有补偿因素,可以证明其安全水平相当于或优于本文规定的安全水平。因此,管理局将根据每个案例的自身优点,全面考虑替代方法对个别申请人的背景和相关性。当确定新标准、实践或程序可接受时,它们将被添加到本文件中。
一般斐济国家航空法由三层或三重系统监管体系组成,包括法案、法规和标准文件;其目的是确保在适当情况下遵守和符合国际民航组织的标准和建议措施 (SARPS)。“三层”或“三重系统”监管体系代表斐济的主要立法体系和具体操作规章,以满足国际民航组织安全监督系统八个关键要素中的关键要素 CE1 和 CE2 标准文件 (SD) 由斐济民航局根据 1979 年民航局法 (CAP 174A) 第 14 (3) (b) 条的规定发布 在适当情况下,SD 还包含有关当局可接受的标准、做法和程序的技术指导(关键要素 CE5)。尽管有上述规定,并且如果本标准文件中明确指出有此类规定,则可以考虑向管理局提交其他合规方法,前提是这些方法具有补偿因素,可以证明其安全水平相当于或优于本文规定的安全水平。因此,管理局将根据每个申请人的实际情况和替代方法的相关性,全面考虑每个案例。当确定新标准、做法或程序可以接受时,它们将被添加到本文件中。目的 本标准文件 RNAV GNSS APPROACHES 由斐济民航局根据《1981 年航空航行条例》(经修订)第 118 条 – (1) 款发布。本文件适用于打算执行 RNAV(GNSS)进近的运营商和飞行员。本文件是根据运营商遵守管理局通知的标准的义务而制定的,也是发出此类通知的方式。变更通知 本标准文件是根据管理局监督认证运营商及其人员的义务而制定的,也是运营商遵守管理局通知的标准的义务而制定的,也是发出此类通知的方式。本文件为原始版本,自 2007 年 5 月 14 日起生效。
许多工业公司正在寻求在其生产链上实施新技术,并希望将其公司重塑为智能工厂,即数字化生产的未来。例如,西门子投资了一个名为 Mindsphere 的项目,该项目是一种工业物联网应用服务解决方案,使用人工智能进行高级分析,结合物联网解决方案和联网产品的云,以优化运营、控制和保护数据,从而生产出质量更好的产品 [6]。据 Klaus Helmrich 先生介绍,西门子正致力于通过数字化重塑工业企业及其生产运营的流程 [7]。亚马逊、阿迪达斯、惠而浦等其他企业在智能工厂方面都有成功案例,这些公司已开始或将开始在其生产链上实施新技术。本研究的目的是定义物联网人工智能一词,研究 AIoT 对工业应用的软硬影响以及在现代工业中实施人工智能和物联网技术的好处。
摘要 — 传统全球导航卫星系统 (GNSS) 的抗干扰能力可能正在接近实际性能上限。在传统 GNSS 轨道和频谱之外有可能获得更大的增益。低地球轨道 (LEO) 的 GNSS 长期以来被视为有前途但成本高昂,需要大型星座来实现快速导航解决方案。最近出现的商用宽带 LEO 巨型星座引发了人们对这些星座双重用途的研究,既可用于通信(其主要任务),又可用于次要的定位、导航和授时 (PNT) 服务。这些星座的运行波长比传统 GNSS 更短,可实现高度定向、相对紧凑的接收天线。不需要特定于 PNT 的在轨资源:托管宽带网络的发射器、天线、时钟和频谱足以满足 PNT 的需求。非合作使用 LEO 信号进行 PNT 是一种选择,但与星座运营商的合作(与其通信任务“融合”)减轻了从地面跟踪密集低空星座的负担,并使接收器能够产生单历元独立 PNT 解决方案。本文提出了这样一种合作概念,称为融合 LEO GNSS。可行性取决于机会成本,或次要 PNT 任务对通信星座运营商造成的负担。这是根据时间-空间-带宽乘积和能量预算来评估的。结果表明,近距离
Zinsser®清除B-I-N®高级合成虫胶密封剂旨在为内部表面提供出色的气味阻断。它在保留伍德的自然外观的同时迅速封闭气味。使用透明的B-I-N先进,以消除食物,厨房油脂,霉菌,宠物尿液,火和烟雾损害以及香烟和雪茄烟中的强味。透明的B- I-N Advanced不包含蜡或硬脂酸盐,使其与清晰的饰面以及乳胶或油基建筑油漆和搪瓷面漆兼容。要在阻塞气味时阻塞不需要的污渍,请使用Zinsser White B-i-n高级终极污渍阻滞剂。使用清晰的B-I-N在所有类型的彩绘或未上漆的内部表面上进行介绍,包括木材,干墙,固化石膏,砌体,镀锌金属和PVC。它对光泽表面(例如搪瓷涂料和清漆,镶板,层压板,玻璃和陶瓷瓷砖)具有出色的粘附性,而无需打磨或脱胶。清晰的B-I-N高级干燥在25-30分钟内触摸,可以在45分钟内打磨或遮盖。性能特征