在临床肿瘤学领域,实施了下一代测序(NGS),旨在为诊断、预后和治疗指导做出贡献。 NGS在分子肿瘤学中的应用非常广泛,这些建议重点关注:针对靶向基因组(体细胞突变)的实验室标准以及基于NGS的肺癌和罕见癌症(即肉瘤和来源不明的癌症)的治疗指导。为了获得能够正确解释的高质量 NGS 结果,必须在预分析阶段进行多重质量控制,提供有关肿瘤大小和细胞、组织处理和脱钙、肿瘤分数、肿瘤活力、所用固定剂和染色的信息。该过程中不同参与者之间的沟通,特别是临床医生和实验室之间的沟通,也有助于对 NGS 结果的解释。所有非鳞状非小细胞肺癌患者均应接受 NGS 组合检测,该组合不仅应包括已获批准的靶向治疗基因( ALK 、 BRAF 、 EGFR 、 MET 、 NTRK 、 RET 和 ROS1 ),还应包括已确定为潜在治疗靶点的基因组改变基因( HER2 和 KRAS )。鉴于 NGS 在罕见肿瘤中的应用科学证据稀缺,建议进行全面的基因组检测,以便
摘要:胰腺导管腺癌 (PDAC) 的侵袭性生物学特性及其对许多全身疗法的敏感性有限,对转移性 PDAC 患者的管理提出了重大挑战。在过去十年中,联合细胞毒性化疗方案的加入改善了患者的预后。尽管取得了这些进展,但不可避免地会出现对细胞毒性化疗的耐药性,因此迫切需要有效的治疗方法。研究的主要重点是确定 PDAC 患者的分子定义亚群,这些亚群可能受益于与其分子特征相匹配的靶向疗法。最近的成功包括证明维持性 PARP 抑制对携带有害 BRCA1、BRCA2 和 PALB2 变异的 PDAC 肿瘤有效。此外,尽管长期以来人们认为 KRAS 的治疗靶向是不可行的,但有关 KRAS G12C 抑制剂疗效的新数据增加了人们对下一代 KRAS 靶向 PDAC 疗法的乐观态度。同时,KRAS 野生型 PDAC 包含 PDAC 的独特分子亚群,其中富含可靶向的基因变异,例如致癌 BRAF 变异、错配修复缺陷以及 FGFR2 、 ALK 、 NTRK 、 ROS1 、 NRG1 和 RET 重排。随着更多分子靶向疗法的开发,精准医疗有可能彻底改变转移性 PDAC 患者的治疗。
摘要 RNA 编辑是指在转录后和核糖体翻译之前发生的非瞬时 RNA 修饰。RNA 编辑在癌细胞中比在未转化细胞中更广泛,并且与各种癌症组织的肿瘤形成有关。然而,RNA 编辑也可以产生新抗原,使肿瘤细胞暴露于宿主的免疫监视。目前,黑色素瘤中的全局 RNA 编辑及其与临床结果的相关性仍未得到很好的表征。本研究比较了黑色素瘤患者(无转移生存期短或长)、免疫和靶向治疗后复发或未复发的患者以及携带 BRAF 或 NRAS 突变的肿瘤)的肿瘤细胞系中的 RNA 编辑和基因表达。总体而言,我们的结果表明 NTRK 基因表达可以作为对 BRAF 和 MEK 抑制的抗性的标志,并为作为潜在生物标志物的候选基因提供了一些见解。此外,这项研究还发现,Alu 区域和非重复区域中腺苷到肌苷的编辑有所增加,包括靶向治疗期间复发肿瘤样本中 MOK 和 DZIP3 基因的过度编辑以及 NRAS 突变黑色素瘤细胞中 ZBTB11 基因的过度编辑。因此,RNA 编辑可能是一种有前途的工具,可用于识别预测标记、肿瘤新抗原和可靶向通路,从而有助于预防免疫或靶向治疗期间的复发。
非小细胞肺癌 (NSCLC) 诊断和治疗方面的重大进展导致相关死亡率急剧下降,从而将 NSCLC 推向了精准医疗的前沿。目前的指南建议对所有已知和可操作的驱动变异/生物标志物(EGFR、ALK、ROS1、BRAF、KRAS、NTRK、MET、RET、HER2 [ERBB2] 和 PD-L1)进行全面的分子检测,特别是在晚期疾病阶段,因为它们会显著影响对治疗的反应。特别是,在任何阶段的非鳞状腺癌 NSCLC 的诊断和进展(耐药性)中,基于混合捕获的下一代测序 (HC-NGS) 和 RNA 融合面板来检测基因融合都是真正的要求。这种检测方式可确保选择最及时、最合适和最个性化的治疗方法,最大限度地提高治疗效果,并防止使用次优/禁忌疗法。作为临床检测和治疗的补充,患者、家庭和护理人员教育也是早期筛查和诊断、获得护理、应对策略、积极结果和生存的关键。社交媒体的出现和互联网接入的增加扩大了教育和支持资源的数量,从而改变了患者护理的动态。本综述为将综合基因组检测与 RNA 融合面板相结合作为所有腺癌 NSCLC 疾病阶段的全球诊断标准提供了指导,并提供了有关患者和护理人员教育和资源的关键信息。
由于基因组医学技术的快速进步,例如DNA测序的发展和分子靶向药物的发展,精确的癌症中心的时代已经开始。2019年,建立了一个全国性的基因组医学系统,癌症基因面板测序开始被日本的国家健康保险介绍。然而,尽管神经胶质瘤包含许多潜在的分子靶标,例如EGFR,IDH1/2,BRAF和组蛋白H3K27的改变,脑肿瘤的患者并未从基因组医学中受益匪浅。针对这些分子的靶向疗法目前正在热情发展;但是,这种尝试尚未取得杰出的成功。迄今为止,只有有限数量的TAR药物用于脑肿瘤,例如免疫检查点,神经营养酪氨酸受体激酶(NTRK)和Bruton酪氨酸激酶(BTK)抑制剂,并且仅在有限的病例中可用。由于相对较少的发病率和通过血脑屏障(BBB)的药物递送,包括进行临床试验的DIFFI培养物的药物发展中仍然存在几个障碍。此外,脑肿瘤也存在多种类型的癌症(例如肿瘤异质性)的一般问题。我们希望克服这些问题能够使精确的基因组医学对诸如恶性神经胶质瘤等脑肿瘤患者更有益。此外,仔细考虑道德,法律和社会问题(ELSIS)很重要,因为它对于与患者保持良好关系是必不可少的,这是基因组医学促进的关键之一。
随着 DNA 测序的发展和分子靶向药物的开发等基因组医学技术的快速进步,精准癌症医学时代已经开始。2019 年,日本建立了全国性的基因组医学系统,癌症基因组合测序开始被纳入国民健康保险。然而,脑肿瘤患者并没有从基因组医学中获益太多,尽管神经胶质瘤含有许多潜在的分子靶点,例如 EGFR、IDH1/2、BRAF 和组蛋白 H3K27 的改变。针对这些分子的靶向疗法目前正在热烈开发中;然而,这种尝试尚未取得显著的成功。到目前为止,只有有限数量的针对脑肿瘤的靶向药物可用,例如免疫检查点、神经营养酪氨酸受体激酶 (NTRK) 和布鲁顿酪氨酸激酶 (BTK) 抑制剂,并且仅在有限的情况下使用。治疗脑肿瘤的药物研发仍面临诸多障碍,包括由于发病率较低而难以开展临床试验,以及药物难以通过血脑屏障 (BBB)。此外,脑肿瘤也存在许多癌症的普遍问题,例如肿瘤异质性。我们希望克服这些问题可以让精准基因组医学为恶性胶质瘤等脑肿瘤患者带来更多益处。此外,仔细考虑伦理、法律和社会问题 (ELSI) 也很重要,因为这对于与患者保持良好关系必不可少,而这正是基因组医学推广的关键之一。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
建议 适合接受磷脂酰肌醇 3-激酶抑制剂和激素治疗的患者应使用新一代测序技术对肿瘤组织或血浆中的循环肿瘤 DNA (ctDNA) 进行 PIK3CA 突变检测,以确定是否适合接受阿培利西布加氟维司群治疗。如果在 ctDNA 中未发现突变,则应在肿瘤组织中进行检测(如果可以)。适合接受聚(ADP-核糖)聚合酶 (PARP) 抑制剂治疗的患者应接受种系 BRCA1 和 BRCA2 致病突变或可能致病突变检测,以确定是否适合接受 PARP 抑制剂治疗。目前尚无足够证据支持或反对对种系 PALB2 致病变异进行检测,以确定转移性环境中是否适合接受 PARP 抑制剂治疗。免疫检查点抑制剂治疗的候选人应接受肿瘤和免疫细胞中程序性细胞死亡配体-1 表达的检测,以确定是否适合接受派姆单抗联合化疗治疗。免疫检查点抑制剂的候选人还应接受错配修复缺陷/微卫星不稳定性高检测,以确定是否适合接受 dostarlimab-gxly 或派姆单抗治疗,以及肿瘤突变负担检测。临床医生可以检测 NTRK 融合以确定是否适合接受 TRK 抑制剂治疗。目前尚无足够数据建议对肿瘤进行 ESR1 突变、同源重组缺陷或 TROP2 表达的常规检测以指导 MBC 治疗选择。目前尚无足够数据建议常规使用 ctDNA 或循环肿瘤细胞来监测 MBC 患者对治疗的反应。
近年来,鉴于新一代测序的商业化应用,患者护理发生了革命性的变化。该技术增强了日常实践中可操作突变的识别以及随后的组织不可知疗法处方。目前针对实体肿瘤的指南建议在晚期进展性疾病中使用基因组检测来确定潜在的治疗靶点,例如 BRCA1/2、BRAF V600E、神经营养性酪氨酸受体激酶 (NTRK) 和 RET 融合和突变、PD-(L)1 表达、DNA 错配修复、微卫星不稳定性以及突变负荷。在乳腺癌中,BRCA1/2 中最常见的种系突变与 DNA 同源重组修复缺陷有关。因此,这些患者是使用聚腺苷二磷酸核糖聚合酶 (PARP) 抑制剂治疗的潜在候选人,因为 BRCA1/2 缺陷细胞对 PARP 抑制引起的毒性双链断裂积累、基因组不稳定性和合成致死性高度敏感 2 。此外,奥拉帕尼 (OlimpiAD) 和他拉唑帕尼 (EMBRACA) 试验表明,在晚期 HER2 阴性疾病患者中使用这些药物可显著延长无进展生存期 2,3 。此外,最近公布的 OlympiA 试验结果代表了在治愈意向环境中向个性化治疗迈出的第一步 4 。OlympiA 是一项新的 III 期试验,研究奥拉帕尼作为高危 HER2 阴性乳腺癌和种系 BRCA1/2 突变患者的辅助治疗。
测序技术的最新进展表明,由染色体重排引起的基因融合是癌症基因组畸变的常见标志之一。例如,对癌症基因组图集(TCGA)数据集进行了详细分析,确定了33种癌症类型的9,966个表征良好的癌症样品中的20,731个基因融合(在对3,838种转录列表过滤后,在648个非否认样品中检测到的3,838个转录列表。另一项研究分析了来自TCGA的9,624个肿瘤的研究总共确定了25,664个融合,并建议融合驱动16.5%的癌症病例的发展,并在超过1%的癌症病例中充当唯一的致癌驱动器(9)。在这篇综述中,我们将总结并讨论新颖的基因融合,除了ALK,ROS1,NTRK和RET融合,这些基因融合被认为是NSCLC中的致癌驱动因素,尤其是对于肺腺癌。这些罕见但可能重要的融合包括神经凝集素1(NRG1)融合,MET融合,涉及成纤维细胞生长因子受体受体(FGFR)家族成员,EGFR融合和BRAF融合的融合基因。Some studies reported that rare primary pulmonary tumors have specific fusion genes, e.g., synaptotagmin 1 ( SYT )- SSX1 or SYT- SSX2 fusions in synovial sarcoma (10) and EWS RNA binding protein 1 ( EWSR1 )- cAMP responsive element binding protein 1 ( CREB1 ) fusion in pulmonary myxoid sarcoma (11);但是,我们不会在这篇评论中包括这些罕见的肿瘤。