BKZ仿真的主要作用着重于显示BKZ算法的高块大小的行为,因此,当前的晶格安全性分析(例如,对当前LWE/NTRU基于的基于LWE/NTRU的方案)的有效/安全参数 - 选择这些模拟的有效/安全参数集的选择)。本文声称,当前的BKZ模拟不一定足够准确,可以进行精确的晶格安全分析,因此,这项研究首次介绍了两种可证明的“更新GSO/系数/系数的仿真”和“ LLL功能的仿真”的工具,以用于设计准确的BKZ模拟。本文证明,对于典型的SVP求解器“ Z”(例如,GNR驱动,筛分,离散的修剪),如果对“ z_memulate”进行了模拟,可以证明“ z_memulate”可以模仿“ z”的实际运行行为,那么我们可以通过“模拟我们的bkz模拟”来模拟'svpsolver'= z____________________________________________________________________________________________________________________________________________________求解器“ z”。我们的BKZ模拟解决了以前的BKZ模拟中的不同问题和弱点。Our tests show that, altogether, the shape of GSO norms ∥ b ∗ i ∥ 2 , the root-Hermite factor of basis, estimated total-cost and the running-time in “Experimental Running of Original BKZ algorithm” are closer to the corresponding test results in “Our BKZ Simulation” than to the test results in “Chen-Nguyen's BKZ simulation”, “BKZ simulation by Shi Bai et al.”和其他一些BKZ模型和近似值。此外,更新Chen-Nguyen的BKZ模拟的GSO规范/系数的错误策略会导致晶格块中的许多GSO违规错误,另一方面,我们的测试结果验证了我们的BKZ模拟中所有这些错误自动消除了所有这些错误。
在计划的证明中将有足够的进步,以至于验证原始词将被视为平凡的,并且对任何新提出的算法都是有力的要求。尽管有这种乐观,但大多数提交了NIST Quantum cryp-tography标准化过程[5]在其开发中没有记录在其开发中使用计算机辅助加密。的确,只有两个提交的NTRU Prime [15]和Classic McEliece [8]提到了对改进其设计的任何潜在使用。NTRU Prime支持文档指出[15],该方案的设计选择使其对其安全性属性更容易正式验证,并且作者已经开始努力验证针对参考信息的优化NTRU Prime实现[14]。经典的mceliece规范表明,需要对量子安全性的验证证明,并提到了对定时攻击的防御措施正式验证的潜力。此外,在评估迄今为止为标准化提出的任何方案评估时,计算机辅助的形式技术还没有太多使用。最近,NIST得出了其标准化过程的第三轮。在第三轮之后,未选择其余的基于代码的候选者进行标准化,但所有这些候选者都被转移到第四轮[1]。基于ISEGEN的方案Sike也已进入第四轮,但随后看到了对其潜在的硬问题的成功攻击[21]。如果选择了任何第四轮KEM候选人进行标准化,则它们很可能是基于代码的,这会激发这些候选人的进一步审查。剩下的基于代码的候选人的安全性知之甚少,尤其是经典的McEliece,这已经长期研究了。因此,其他标准将在评估和区分这些方案中起重要作用。我们认为,在此阶段,应用计算机辅助密码学的工具来研究这些方案至关重要。首先,使用这些工具进行审查和验证的每种方案的不适当性可能是评估的标准。其次,证明计划的设计或实施已被验证在该方案中进一步提供了解决方案。在这项工作中,我们专注于应用计算机辅助的加密技术,以开发经典的McEriece计划。我们的主要重点是将SAW/Cryptol工具链[25,20]应用于经典的McEliece参考实现。我们还使用互动定理供属依据来报告我们最近的e Ort在经典McEliece设计的基本方面的验证中。
NIST的作用是标准化协议。为此,他们于2016年启动了公共候选人的请求:研究人员和计算机科学家将向NIST提交潜在的量子安全算法。在2020年7月22日,这一请求的第三轮结束,四种算法是用于公钥加密和钥匙建设的最终主义者,三位是数字签名的最终主义者(也有一些替代候选人)。这些方案使用上面引用的方法(例如,我们发现NTRU和Meceliece方案)。他们为未来几年的标准化过程选择一种或一些算法。在报告中,NIST估计,一款能够破坏RSA2048的量子计算机可以在2030年提供,他们建议公司在2020年的下半年进行更改。然后,预计2022年左右的标准。
基于晶格的密码系统(Kiltz等,2018; Bos等,2018; Fouque等,2020)被选为NIST Quantum加密后(PQC)Standards(Alagic等,2022)。Lattice-based schemes, including the PQC standards, are often based on polynomial rings i.e., NTRU (Hoffstein et al., 1998; Fouque et al., 2020), Ring-LWE (Stehl´e et al., 2009; Lyubashevsky et al., 2010) and Module-LWE (Brak- erski et al., 2011; Langlois and Stehl´e, 2015年),以提高效率。离散的高斯概率分布(定义2.2)是晶格cryp-图表中的重要对象,更普遍地是晶格的数学效果。例如,对晶格问题的计算硬度的分析(Regev,2005; Micciancio和Regev,2007; Gentry等,2008; Peikert,2009; Brakerski等,2013)依赖于离散高斯人的有用特性。此外,许多基于高级晶格的Crypsystems,例如基于身份的加密(Gentry等,2008; Agrawal等,2010)和功能
随着量子计算机的日新月异,对隐私构成威胁,大整数分解和离散对数等数学难题将通过 Shor 算法被破解。这将使广泛使用的密码系统过时。由于量子计算的进步,后量子密码学最近大受欢迎。因此,2016 年,美国国家标准与技术研究所 (NIST) 启动了一项标准化流程,以标准化和选择能够抵御量子计算机攻击的加密算法和方案,称为后量子密码学。标准化过程始于 69 份密钥封装机制 (KEM) 和数字签名 (DS) 的提交。4 年后,该流程已进入第三轮(也是最后一轮),有 7 个最终候选方案,其中 4 个是 KEM(CRYSTALS-Kyber、SABER、NTRU、Classic McEliece),其余 3 个提交是 DS(CRYSTALS-Dilithium、FALCON、Rainbow)。标准化过程大部分向公众开放,NIST 要求研究人员从理论和实施的角度研究提交的内容,以确定所提议候选方案的优点和缺点。
在2020年7月中旬,NIST宣布了第三轮标准化过程的候选人。虽然Classic McEliece是剩余的四个关键协议算法之一,但Frodokem已列入替代候选人列表中,请参见[13]。除了经典的Mceliece外,三种基于晶格的关键协议算法(Crystals-kyber,NTRU,Saber)仍处于第三轮比赛。nist证明,与其他基于晶格的方法相比,仅将Frodokem视为效率较低的替代方法的决定是合理的。效率下降是由于以下事实,其他方法基于具有附加结构的晶格中的问题。附加结构提供了一个优势,即相应的方法更有效,需要较小的密钥。但是,这也意味着BSI对这些算法的安全性没有相同的信心。nist还认为,基于“结构化”晶格中的问题的新攻击可以开发出对基于晶格的算法的新攻击,并将Frodokem视为“保守的备份”,请参见。[13]。
不断重新评估保护运输中数据的策略。密码学通过加密过程能够将明文转换为密文的能力仍然是现代数据安全框架的基石。本文回顾了一系列数据安全方法,重点介绍了隐藏数据中高级加密标准(AES)系统的性能。采用一种结构化方法来实现审查的方法,文献中对加密技术进行了审查。进行分析以获得经过审查的文献,评估不同加密方法的优势和局限性。在各种文献中评估了加密技术的实际应用,从而确定了对增强现代数字环境中数据安全的潜在影响。可以观察到使用加密技术可以通过Internet和其他形式的数据传输来保护数据,但是蛮力方法有时可以轻松地识别隐藏的数据。本文建议将两个或多个算法结合起来可以带来更好的数据安全性。具体而言,将AES算法与其他算法相结合,例如代理补给,蜂蜜加密和N-Thger截短的多项式环单元(NTRU)可以增强数据加密和解密过程。
摘要 - 无线传感器网络旨在收集用于监视和决策目的的环境数据,通常依靠具有有限的计算资源的低功耗传感器节点,这使得使用昂贵的密码原始词以挑战这些网络。此外,已经提出了量子计算机的出现威胁传统的加密方案,并提出了Quantum加密方案作为解决方案。这项工作着重于研究无线传感器网络中Quantu-Tum数字签名和关键交换机制的不同组合的行为和性能,其中节点数量较大,包括Crystals-Dilithium,Falcon,Sphincs+,Crystals-kyber,Kyber,NTRU和Saber,并侧重于它们的交互和网络量表。模拟模型用于生成与净工作功能,应用程序质量和可扩展性相关的指标,并具有动态节点行为。这些发现提供了有关无线传感器网络中量词后方案不同组合的行为的见解,并有助于了解其在现实世界部署中的适合性和潜在挑战。尤其是,猎鹰和水晶 - 凯伯的组合似乎是将来部署安全传感器网络的最有希望的候选者。但是,其他组合可以根据其与最终应用程序的Pa-Rameters的相互作用提出更好的性能。
在2005年推出的错误(LWE)假设[REG05]的学习已成为设计后量子加密术的Baiss。lwe及其结构化变体,例如ring-lwe [lpr10]或ntru [hps98],是构建许多高级加密启示剂的核心GVW15],非交互式零知识[PS19],简洁的论证[CJJ22]以及经典的[GKW17,WZ17,GKW18,LMW23]和量子加密[BCM + 18,MAH18B]的许多其他进步。虽然LWE在产生高级原始剂方面已被证明具有出乎意料的表现性,但其他量子后的假设,例如与噪音[BFKL94],同基因[COU06,RS06,CLM + 18]和多变量Quadriate Quadratie Quadratic [OSS84]相关的疾病,以前的疾病是在障碍的情况下,这使得直到启动的迹象,这使得曾经是直接的,这使得一直以前的疾病,这使得一直以前的疾病,这使得一直以前的疾病,这使得一直以前的疾病。量子后密码学。这种状况高度令人满意,因为我们想在假设的假设中有一定的多样性,这意味着对冲针对意外的隐式分析突破。的确,最近的作品[CD23A,MMP + 23,ROB23]使Sidh在多项式时间中经典损坏的Quantum假设曾经是宽松的。这项工作旨在解决潜在的停滞,以实现高级后量子加密的技术和假设。在大多数情况下,这种假设缺乏多功能性可能归因于缺乏利用其他量词后假设的技术。这项工作的重点在于基于代码的加密假设,例如噪声(LPN)假设[BFKL94]及其变体的学习奇偶校验。与噪声的学习奇偶校验认为,被稀疏噪声扰动的随机线性方程(带有种植的秘密解决方案)出现了。即:
