相比之下,CPA的量子状态(稀薄的吸收剂都被量子光相干地照亮)缺乏这种解释的清晰度。CPA过程的结果在很大程度上取决于光的量子状态。例如,单个光子状态的总吸收和总传播状态之间的“经典”调制[10,11],而概率零或两光子吸收可能发生在两个光子状态[12-14] [12-14]。开发了量子光的CPA的理论模型[15-17]描述了量化行进波的问题,图。1(a),其中未考虑吸收剂的亚波长厚度。此外,根据所考虑的量子状态,需要进行骨气[15]或fermionic [13]第二量化形式主义。尽管缺乏对基本过程的清晰图片,但CPA的量子制度对于量子光学和量子信息的应用还是很大的兴趣。CPA为量子状态控制提供了一种强大的方法,包括量子状态过滤[16-18]和操纵量子光相关性[12-15,19]。最近,提出了量子光的分布式CPA的机理,以确定多节点量子网络中的纠缠确定性生成[20]。从基本的角度来看,CPA的量子状态提供了有关量子光吸收过程的新见解,包括局部[10,11,21]和非本地[22]光子吸收控制,概率两光子和确定性的一种光子吸收两个光子状态[12,13] [12,13]。该研究领域的进一步发展需要清楚地解释CPA的量子效应。
Verzola,I。M. R.,Villaos,R。A.B.,Purwitasari,W.,Huang,Z.,Hsu,C.,Chang,G.,Lin,H。&Chuang,F。(2022)。范霍夫奇异性的预测,出色的热电性能和单层rhenium dialcogenides中的非平凡拓扑。Today Communications,33,104468-。https://dx.doi.org/10.1016/j.mtcomm.2022.104468https://dx.doi.org/10.1016/j.mtcomm.2022.104468
规划学术图书馆空间的框架Choy Fatt Cheong&Goh su nee介绍目的(强制性)重点是在过去十年左右的时间里为用户设计空间,这意味着图书馆从提供资源到积极活跃的伙伴的逐渐变化。为支持学习的用户空间计划要复杂得多,因为它需要考虑到用户的需求和行为的多样性。在指定用户空间的实际布局和设计之前,重要的是考虑影响预期图书馆空间使用的所有主要因素。本文为图书馆计划的指南提供了基础,基于Nanyang Technological University(NTU)图书馆的作者经验。设计/方法/方法(强制性)在NTU库开发的计划库空间的框架由四个组件组成 - 协作空间,庇护所空间,互动空间和社区空间。讨论这些空间的基本原理和实施的建议将有助于其他人就自己的图书馆太空规划练习提出适当的问题。发现(强制性)论文加强了这样的观点,即一个好的图书馆建筑必须提供各种各样的空间,其中一些空间是矛盾的,因为学生的需求与另一个不同。一个学生在不同的时间也有不同的需求。提供和平衡这些需求至关重要。原创性/价值(强制性)本文提供了一个经过久经考验的概念框架,用于图书馆空间设计师使用。关键字:图书馆空间规划,学术图书馆,协作空间,安静的空间,互动空间,社区空间简介学术图书馆不再专注于开发用于搁置印刷品和物理藏品的住宿空间。当盛行的视图是不可避免地用数字收集的物理收藏的位移时,很难为那些拥有钱包字符串的当局辩护。图书馆的空间已逐渐被改建为学生学习和工作空间和学习共享,并将收集空间推到了侧面或远离图书馆大楼。从藏品的住宿到专注于用户空间的转变表明,已经观察到了一段时间的学术图书馆的主要角色的主要但逐渐转变。学术图书馆正在从成为信息资源的提供商变为
新加坡新闻稿,2024年11月21日,新加坡东道国主持人瑞典国王;加深与瑞典机构Nanyang Technological University,新加坡(NTU新加坡)的联系正在加深与瑞典机构的合作,此前瑞典国王卡尔·十六世·古斯塔夫(Majesty King King Carl XVI Gustaf)今天访问了该大学的校园。作为对新加坡进行为期三天的国事访问的一部分,卡尔十六世·古斯塔夫(King Carl XVI Gustaf)参加了由NTU主持的午餐和小组讨论,以及瑞典皇家代表团,政府代表,商业领袖以及NTU的教职员工和管理人员。在访问期间,NTU和瑞典机构签署了两项学术和研究关系的协议。这是国王第一次访问NTU。2019年,他的皇家殿下瑞典王子丹尼尔(Daniel)访问了NTU,了解了NTU的医疗技术创新和企业家计划。NTU总裁Ho Teck Hua教授说:“我们很荣幸今天在我们的校园内接待Carl XVI Gustaf。。 ntu与许多瑞典机构有着密切的关系。 来自两国的教师利用了他们可用的众多研究合作和奖学金,而我们的本科生则从瑞典大学提供的许多交流机会中受益。 我们期待加深与瑞典的联系,因为我们加强研究,学术和工业关系,以应对可持续性和人工智能的挑战。”进一步的研究和学术合作通过一系列联合计划,肯定了与瑞典机构的合作,从而增强了学术,研究和工业关系NTU总裁Ho Teck Hua教授说:“我们很荣幸今天在我们的校园内接待Carl XVI Gustaf。ntu与许多瑞典机构有着密切的关系。来自两国的教师利用了他们可用的众多研究合作和奖学金,而我们的本科生则从瑞典大学提供的许多交流机会中受益。我们期待加深与瑞典的联系,因为我们加强研究,学术和工业关系,以应对可持续性和人工智能的挑战。”进一步的研究和学术合作通过一系列联合计划,肯定了与瑞典机构的合作,从而增强了学术,研究和工业关系NTU和隆德大学签署了一份理解备忘录,以促进研究合作和大学间的教育机会。两所大学都将确定在材料科学工程,生命科学和可持续性等研究领域合作的新机会。ARITICTENCES(AI)是另一个主要的
新闻稿 新加坡,2023 年 11 月 27 日 新加坡南洋理工大学科学家在海洋塑料垃圾上繁茂的细菌和真菌群落中发现潜在威胁和有希望的资源 新加坡南洋理工大学 (NTU Singapore) 的一组科学家在被冲上新加坡海岸的塑料垃圾上繁茂的细菌和真菌群落中发现了潜在威胁和有希望的资源。 当塑料进入海洋时,微生物会附着并在它们中定殖,形成一个被称为“塑料球”的生态群落。 尽管全球海洋中有数百万吨的塑料垃圾,但人们对塑料球如何在热带海洋环境中组装和与塑料宿主相互作用知之甚少。 为了了解塑料与微生物的相互作用,NTU 的研究人员提取了从新加坡 14 个沿海地点收集的塑料球的 DNA 信息(见下图)。 他们发现样本上繁茂着潜在的食塑细菌和有害微生物。这项研究于 9 月发表在《环境国际》杂志上,是针对东南亚热带海洋和沿海环境(包括珊瑚礁、红树林、海草床、海滩和开阔水域)进行的少数塑料圈研究之一。这项研究的主要作者、新加坡环境生命科学工程中心 (SCELSE) 的 NTU 博士生 Jonas Koh 表示:“塑料圈可以影响塑料碎片的命运,例如将其分解成微塑料,导致它们下沉或漂浮。然而,人们对热带沿海海洋环境中塑料圈中的微生物种类知之甚少。它们如何相互作用?塑料碎片如何影响它们的发展?我们想知道这些问题的答案,这可以帮助决策者做出明智的决定,以减少对我们东南亚海洋生态系统的潜在威胁。”塑料圈影响沿海生态系统的健康
2一个综合分散的分散的现场氢过氧化氢生产技术Xu Zhichuan,Jason NTU 3朝类似人类的自主权:驾驶员风格的运动控制,使用深层神经网络进行深层神经网络,用于个性化的chen lyu ntu ntu ntu 4软性离子率的多态性水凝胶纤维
批准第一类抗菌bedaquiline用于结核病标志着抗结核药物开发的突破。该药物抑制分枝杆菌呼吸,并代表了完全不同的代谢过程作为可毒靶空间的验证。在这篇综述中,我们讨论了分枝杆菌呼吸抑制剂发展的进步,以及将该策略应用于其他病原体的潜力。分枝杆菌的非发酵性质解释了它们对呼吸抑制的脆弱性,我们警告说,该策略在其他生物体中可能并不同样有效。相反,我们还展示了揭示呼吸道途径的辅助功能的基本研究,这对于某些病原体的毒力,药物敏感性和适应性至关重要,它引入了将细菌呼吸作为抗生素策略的另一种观点。
Sugam Budhraja是新西兰奥克兰理工大学的博士生。他的背景是机器学习和软件开发。他的研究领域包括神经信息学,深度学习,自学学习和回声状态网络。Maryam Doborjeh获得了新西兰奥克兰理工大学的计算机科学博士学位。她目前是新西兰奥克兰技术大学工程,计算机和数学科学学院的高级讲师。她的研究领域是神经信息学,尖峰神经网络,机器学习和大脑数据分析。巴尔卡兰·辛格(Balkaran Singh)是新西兰奥克兰理工大学的博士生。他的背景是计算机科学和应用统计。他的研究领域是在神经网络,持续学习,元学习和尖峰神经网络中的优化。塞缪尔·谭(Samuel Tan)是新加坡南南技术大学的博士生。他的背景是生物科学和统计。他的研究领域包括生物信息学,网络理论和邻里优化。Zohreh Doborjeh获得了博士学位。来自新西兰奥克兰技术大学的计算认知神经科学博士学位。她目前是新西兰奥克兰大学大脑研究中心的博士后研究员,也是新西兰威卡托大学心理学学院的讲师。她的研究领域是神经信息学,神经心理学,认知神经科学和人工智能。收到:2023年2月9日。埃德蒙德·莱(Edmund Lai)获得了西澳大利亚大学的电气工程博士学位。他目前是新西兰奥克兰技术大学工程,计算机和数学科学学院的信息工程学教授。他的研究兴趣是数字信号处理,计算智能,多代理动力系统和优化。亚历山大·梅尔金(Alexander Merkin)在俄罗斯的社会和法医精神病学研究中心获得了精神病学博士学位。他目前是AUT大学中风与应用神经科学研究所的研究员,也是Aut University心理治疗与咨询系讲师。他的研究兴趣包括数字心理健康,人工智能,心理学,精神病学和认知神经科学。吉米·李(Jimmy Lee)获得了新加坡国立大学的基本医学学位。他是新加坡心理健康研究所的精神科医生和临床医生,也是南约技术大学Lee Kong Chian医学院的副教授。他的研究领域是精神病学,心理药理学,精神分裂症和基于AI的健康技术。Wilson Goh获得了英国伦敦帝国学院的生物信息学和计算系统生物学博士学位。他目前是新加坡南南技术大学Lee Kong Chian医学院生物医学信息学助理教授。 他的研究领域是复杂的系统,生物信息学,计算生物学,蛋白质组学和基因组学。他目前是新加坡南南技术大学Lee Kong Chian医学院生物医学信息学助理教授。他的研究领域是复杂的系统,生物信息学,计算生物学,蛋白质组学和基因组学。尼古拉·卡萨博夫(Nikola Kasabov)获得了保加利亚索非亚技术大学的博士学位。他是新西兰奥克兰技术大学工程,计算和数学科学学院的Kedri的创始董事和知识工程教授。他在英国Ulster University,IICT保加利亚科学院和中国达利安大学担任教授职位。他的研究领域是计算智能,神经信息学,知识发现和尖峰神经网络,以及700多个出版物。修订:2023年9月18日。接受:2023年10月3日©作者2023。牛津大学出版社出版。这是根据Creative Commons归因非商业许可(https://creativecommons.org/licenses/by-nc/4.0/)发行的开放访问文章,该媒介在任何媒介中允许非商业重复使用,分发和复制,前提是原始工作被正确引用。有关商业重复使用,请联系journals.permissions@oup.com
量子计算机从支持量子叠加状态或非古典相关性(例如纠缠)的能力中获得了力量。提出了各种系统以实施,包括腔量子电动系统,半导体量子点或冷原子。激子 - 孔子与这些系统具有许多相似之处:它们是由腔体构造的,部分由激子组成,并形成了Bose-Einstein冷凝物的类似物。因此,自然可以推测其量子应用。重要的是要欣赏我们所说的“量子”。在文献中,尤其是与激子 - 摩尔体子有关的,通常说量子涡流,量子流体或量子量。虽然涡旋可能显示出量化的绕组数,但它们也存在于经典的光波场中。所描述的量子流体通常是通过平均场波函数很好地描述的[1],该[1]由振幅和相位定义。在许多情况下,这种参数是准确的,这意味着我们没有访问系统的整个希尔伯特空间,这要求我们远离通常研究的相干状态或偏振子凝结物。经常使用的论点是,某物最终由量子粒子组成,因此量子也是如此。但是,我的计算机最终由量子粒子组成,但不能运行Shor或Grover的算法。激子 - 果龙的量子特征。早期的理论工作期望极化子之间的非线性相互作用会导致纠缠[2-6]。原则上,如果两个极地彼此散布,那么它们将被纠缠,但是,实际上,一个极性群体永远不会与两个极性人一起使用。与粒子的分布一起工作时,相互作用模式之间发展的量子相关性,例如,在平面微腔中以不同波形为特征的量子相关性更好地称为挤压(指在wigner函数代表时相位空间中分布的压壁)。仅从相互作用[9,10]中检测到有限的挤压[7,8]或量子互补性。可以证实,如果极性子被系统以外产生的纠缠光子激发,那么它们会保留此纠缠[11],因此毫无疑问它们是量子颗粒。单个极性子的行为也已得到充分的特征[12]。但是,从极地 - 帕利顿相互作用中产生牢固纠缠的状态一直具有挑战性。这可能是由于存在其他散射过程(带有障碍或声音声子)污染了不相关的极性子的信号。极化系统当前局限性的另一个例证在于单个隔离模式的物理。众所周知,当极性子注入共振激光器时,由于相互作用,它们的强度会增加,它们会浮出水面。这导致
©2024作者。本文是根据创意共享归因4.0国际义务许可的,只要您对原始作者和来源提供适当的信誉,它允许使用,共享,适应,分发和复制在任何媒介中,并提供了与创意共享许可证的链接,并表明是否进行了更改。te图像或其他第三方材料,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您将需要直接从Thecopyright持有人获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。