Altratech 总部位于爱尔兰,拥有一支由 17 名科学家和工程师组成的多学科团队,他们在微流体、芯片设计、生物学、物理学和化学领域拥有专业知识。公司的知识产权受到 40 项自主研发的国际专利系列的保护,另有 12 项专利申请正在申请中。除这些专利外,Altratech 还与美国国立卫生研究院共同持有一项专利,并与其合作进行 PNA 探针的设计和合成。公司的行业合作伙伴包括:负责 CMOS 芯片制造的 On-Semiconductor(美国)、负责 PNA 晶圆点定位的 AMI-Schott(美国)以及负责临床试验的 Cork University Hospital(爱尔兰)和 St Cecilio Hospital(西班牙)。Altratech 的专利律师是 Brown Rudnick(美国),审计师是 BDO。公司的发起人在微流体和芯片设计领域拥有丰富的经验,曾创建并出售过多家公司给 Life Technologies 和 Silicon Labs。迄今为止,Altratech 已筹集约 2000 万美元,资金来自欧盟 MEDLoC、欧盟 Horizon 2020 和美国 BARDA DRIVe 项目。公司投资者包括 Kernel Capital、Infinity Capital 和 Claret Capital。2024 年 10 月,Altratech 成功申请欧洲创新理事会 (European Innovation Council) 享有盛誉的加速器计划,并获得 1050 万欧元的资助。公司目前正在生命科学行业寻求战略合作伙伴,并愿意接受投资和许可安排。
AI社区专注于蛋白质。自Alphafold2 Jumper等人出版以来。(2021)在2021年,人们对AI驱动的蛋白研究引起了巨大的兴趣。这一突破对结构生物学,药物发现和生物技术产生了深远的影响,从而为蛋白质设计和工程提供了新的生物学见解和高级AI工具。同样,机器学习会议已经看到了用于结构生物学和药物设计的论文激增,但大多数工作都集中在蛋白质和小分子上。尽管Alphafold2的成功也引起了人们对核酸研究的核酸(RNA和DNA)的关注,但仍有尚待探索核酸研究的AI机会。在这个研讨会上,我们的目标是将聚光灯转移到核酸,希望在机器学习与核酸研究的交集中引发协作和创新。研讨会将讨论与蛋白质相比,促进现实世界应用以及AI研究对诊断,治疗和生物技术的影响的独特挑战。
詹姆斯·沃森(James Watson)和弗朗西斯·克里克(Francis Crick)在1953年4月25日发表在《自然》杂志上的一份开创性论文中提出了DNA结构的双螺旋模型。他们的模型基于Rosalind Franklin和Maurice Wilkins收集的X射线衍射数据,以及Chargaff关于DNA的基础组成的规则。Watson-Crick模型为DNA结构提供了全面而准确的解释,并揭示了其优雅且功能性的架构。在观察富兰克林的X射线衍射照片后,沃森和克里克应用了所有以前的知识,这些知识是在剑桥大学中使用金属棒和盘子进行物理组装的所有知识。由于Linus Pauling最近显示了蛋白质的α-螺旋结构,因此它帮助他们在1953年2月28日最终确定了DNA的结构(图12.12)。
为了使DNA形成双链结构,重复或与RNA相互作用,碱基必须能够在一致的paxern中连接,以维持DNA序列。这涉及所谓的互补碱配对。嘌呤必须始终与嘧啶搭配,以维持相互间隔的两个分子之间的操作/mal距离。The complementary base pairing that occurs is: • The purine adenine (A) always pairs with the pyrimidine thymine (T) by forming two hydrogen bonds • The purine guanine (G) always pairs with the pyrimidine cytosine (C) by forming three hydrogen bonds • In an RNA sequence, the base thymine is replaced by uracil (U), and so this pairs with adenine 反而。
图 12. Sanger 法。A) 双脱氧核苷酸 (ddNTP) 的结构与脱氧核苷酸 (dNTP) 相似,只是缺少 3'OH 基团。B) 当荧光标记的 ddNTP 被掺入 DNA 链时,合成会停止。在包含不同 ddNTP 的反应中,DNA 片段合成可以在不同点终止。然后根据大小分离合成产物,并使用荧光标记来确定序列中添加核苷酸的顺序。基因组很大 - 通常有数百万个碱基对 - 因此无法在一个步骤中端到端测序。要对基因组进行测序,必须首先将其 DNA 分解成较小的片段,并对每个片段进行单独测序。特定 DNA 片段的既定碱基顺序称为“序列读取”。然后利用计算工具组装各种片段并推断出起始基因组的序列。这个过程在历史上被称为“散弹枪测序”。人类基因组计划 (HGP) 是全基因组 DNA 测序的首次重大尝试,由美国国立卫生研究院牵头。HGP 于 2003 年完成,利用桑格测序法对来自多个个体的 DNA 的基因组克隆进行测序,以生成人类基因组的代表性序列。