摘要 — 定期监测住院患者的营养摄入量对于降低疾病相关营养不良风险起着至关重要的作用。尽管已经开发出多种估算营养摄入量的方法,但显然仍然需要一种更可靠、完全自动化的技术,因为这可以提高数据准确性并减轻参与者的负担和医疗成本。在本文中,我们提出了一种基于人工智能 (AI) 的新型系统,通过简单处理餐前和餐后捕获的 RGB 深度 (RGB-D) 图像对来准确估算营养摄入量。该系统包括一个用于食物分割的新型多任务上下文网络、一个由有限训练样本构建的用于食物识别的基于少量学习的分类器,以及一个用于 3D 表面构建的算法。这允许对食物进行顺序分割、识别和估计消耗的食物量,从而可以全自动估计每餐的营养摄入量。为了开发和评估该系统,我们组建了一个专用的新数据库,其中包含 322 份膳食的图像和营养食谱,并使用创新策略结合数据注释。实验结果表明,估计的营养摄入量与基本事实高度相关(> 0.91),平均相对误差非常小(< 20%),优于现有的营养摄入量评估技术。
流域保护区 Hannah Riedl,水质专家 贡献者: 水质规划局标准和建模科 Eric Regensberger,水质模型师 Mike Suplee,水质科学家 流域保护区 Kristy Fortman,前流域保护区主管 Christy Meredith,水质专家 Dean Yashan,水质专家,已退休 标题页照片是苦根河在泉水流量大的情况下的样子。照片中,河岸茂盛的植被稳定了河岸,消散了洪水能量。 蒙大拿州环境质量部水资源保护局 1520 E. Sixth Avenue PO Box 200901 Helena, MT 59620-0901 建议引用:蒙大拿州环境质量部。2022 年。苦根河保护计划草案。蒙大拿州海伦娜:蒙大拿州环境质量部。
概述 本活动使用塞伦盖蒂生态系统的一个例子来说明植物、动物和环境之间的营养交换。 塞伦盖蒂作为案例研究可以教授许多生态学概念。 这是一个丰富多样的栖息地,人们进行了大量研究来解释生物如何相互影响以及与环境如何相互作用。 本活动以典型的稀树草原草和角马为例,重点介绍碳、氮和磷的循环。 在观看简短的介绍视频后,学生使用卡片活动来了解塞伦盖蒂营养循环中的一些过程。 然后,他们通过小组讨论和完成额外的讲义来反思这些过程。 讲义有两种版本,根据对学生所需的先验知识量而有所不同。
近年来,RNA 引导的基因组编辑 (CRISPR-Cas9 技术) 的发展彻底改变了植物基因组编辑。在营养缺乏条件下,不同的转录因子和调控基因网络共同作用以维持营养稳态。提高氮 (N)、磷 (P) 和钾 (K) 的利用效率对于确保可持续产量、提高质量和抗逆性至关重要。本综述概述了适合基因组编辑的潜在目标,以了解和提高营养利用 (NtUE) 效率和营养胁迫耐受性。还描述了使用关键负调节剂和正调节剂的不同基因组编辑策略。营养信号的负调节剂是基因组编辑的潜在目标,可在资源匮乏的条件下改善营养吸收和应激信号。通过 CRISPR/dead (d) Cas9 (dCas9) 胞嘧啶和腺嘌呤碱基编辑和主要编辑进行的启动子工程是产生精确变化的成功策略。 CRISPR/dCas9 系统还具有利用转录激活因子/抑制因子以有针对性的方式过度表达目标基因的额外优势。CRISPR 激活 (CRISPRa) 和 CRISPR 干扰 (CRISPRi) 是 CRISPR 的变体,其中实现了 dCas9 依赖的转录激活或干扰。dCas9-SunTag 系统可用于设计植物中的靶向基因激活和 DNA 甲基化。通过 CRISPR-Cas 技术开发营养利用效率高的植物将加快作物营养胁迫耐受性遗传改良的速度,并提高农业的可持续性。
tmp 006 - 营养琼脂板的预期使用一种通用培养基,用于种植各种微生物。产品摘要和解释营养培养基是用于培养和列举细菌的基本培养基,这些培养基并非特别挑剔和维持微生物,通过富集血清或血液来培养挑剔的生物体,并在生物学或血清学测试之前也用于纯度检查。营养琼脂非常适合演示和教学目的,在这种目的中,通常需要在环境温度下培养更长的生存期,而不会在更营养的基材中发生过度生长的风险。这种相对简单的公式已保留,并且仍被广泛用于各种材料的微生物检查,也建议通过标准方法进行。它是几种用于常规培养微生物的非选择性介质之一。构图
Abbreviation/Acronym What It Means APA Administrative Procedure Act CDRR Chronic Disease Risk Reduction Intake CVD Cardiovascular Disease Dietary Guidelines Dietary Guidelines for Americans DV Daily Value DRV Daily Reference Value c-eq Cup Equivalent DRI Daily Reference Intake DGAC Dietary Guidelines Advisory Committee FDA Food and Drug Administration FD&C Act Federal Food, Drug, and Cosmetic Act FGE Food Group Equivalent FPED U.S. Department of Agriculture Food Patterns Equivalents Database GRAS Generally Recognized As Safe FSDU Foods for Special Dietary Use HHS U.S. Department of Health and Human Services G Gram IOM Institute of Medicine OMB Office of Management and Budget National Academies National Academies of Sciences, Engineering, and Medicine NFL Final Rule Food Labeling: Revision of the Nutrition and Supplement Facts Labels, Final Rule NHANES National Health and Nutrition Examination Survey NSLP国立学校午餐计划NLEA营养标签和教育法NTE营养素,以鼓励NTL营养限制Oz-eq盎司等效的MG Milligram Oz oz oz oz
营养肉汤 2 号 预期用途 营养肉汤 2 号适用于培养和富集要求不高的细菌,也可作为制备特殊培养基的基础。 摘要 营养肉汤是一种通用培养基,用于培养对营养要求不高的微生物。肉和蛋白胨的浸出物构成了许多培养基的营养成分。营养肉汤 2 号是一种基本培养基,用于维持微生物以及在生化或血清学检测之前检查纯度。它用于培养和计数要求不是特别高的细菌。它以半固体形式用于维持或控制标准生物。添加不同的生物液体,如马或羊血、血清、蛋黄等,使其适合培养要求不高的生物。 原理 肉蛋白胨和酪蛋白酶水解物为非要求生物的生长提供必要的营养。氯化钠可维持培养基的渗透平衡。 配方* 成分 g/L 肉蛋白胨 4.3 酪蛋白酶水解物 4.3 氯化钠 6.4 最终 pH(25°C 时) 7.4 ± 0.2 *根据性能参数进行调整。 储存和稳定性 将脱水培养基储存在密闭容器中,温度低于 30°C,将配制好的培养基储存在 2°C-8°C 下。避免冷冻和过热。请在标签上的有效期前使用。开封后,请将粉末培养基密封,以免受水合。 样本采集和处理 确保所有样本都贴有正确的标签。按照既定准则,遵循适当的样本处理技术。某些样本可能需要特殊处理,例如立即冷藏或避光,请遵循标准程序。样本必须在允许的时间内储存和测试。使用后,受污染的材料必须经过高压灭菌后才能丢弃。使用方法 1. 将 15.00 g 粉末悬浮于 1000 mL 纯净/蒸馏水中。 2. 必要时加热,使粉末完全溶解。 3. 按需分配并根据验证周期在 121°C (15 psi) 下高压灭菌 15 分钟。 质量控制 脱水外观:乳白色至黄色、均质、自由流动的粉末。 制备外观:浅黄色至琥珀色,澄清溶液,无任何沉淀。 生长促进测试:根据 USP/EP/JP/IP 的协调方法进行生长促进,在 30°C-35°C 下孵育 18 至 24 小时后观察到生长。 生长促进特性:观察到的测试结果在测试中规定的规定温度和最短时间内,在 30°C-35°C 下接种 ≤ 100 cfu 的适当微生物 18 小时。
这项研究研究了农业级(AG)培养基中的营养变化以及如何改变同胆料SP的生物量产生和二氧化碳固定能力时会发生什么。它旨在解决由于微藻问题而建立生物燃料库存的挑战。首先使用媒介物和盒子behnken实验设计在AG培养基中确定Ag培养基中氮,磷和微量营养素的最佳水平,从而改善了N,K,Ca,Ca,Mg,Fe和Z,并具有15 mm,10 mm,0.5 mm,0.5 mm,0.8 mm,0.8 mm,0.3 mm,0.3 mm,0.15 mm,0.15 mm,0.15 mm,0.15 mm,0.15 mm,0.15 mm,0.15 mm,0.15 mm,0.15 mm,相应。随后,与传统的F/2培养基(1.63 GL -1)相比,在改进的AG培养基中从培养中提取的2.37 GL -1生物量在1L培养量中进行了测试,从而导致2.37 GL -1生物量。与AG培养基相比,在临时研究中进行了较高Ca和Fe测试的培养物产生了9%和7%的生物量产生。 在250升气泡起泡柱中测试了新的优化培养基,称为TNBR优化培养基(OM),在现场燃煤发电厂进行了测试 - 型号的型光生反应器,并提供了模拟和实际的烟道气体。 TNBR优化的培养基表现出更好的藻类生长,尤其是在实际的烟道气体上,这增加了CO 2的浓度。 相对于从上一报告(0.52 GCO 2 L -1天-1)获得的改进的CO 2固定率分别为0.72 GCO 2 .L -1天-1。 已经制定了一种改进的培养基来培养等速液,并且当前的工作可以进一步用于大规模培养。培养物产生了9%和7%的生物量产生。在250升气泡起泡柱中测试了新的优化培养基,称为TNBR优化培养基(OM),在现场燃煤发电厂进行了测试 - 型号的型光生反应器,并提供了模拟和实际的烟道气体。TNBR优化的培养基表现出更好的藻类生长,尤其是在实际的烟道气体上,这增加了CO 2的浓度。相对于从上一报告(0.52 GCO 2 L -1天-1)获得的改进的CO 2固定率分别为0.72 GCO 2 .L -1天-1。已经制定了一种改进的培养基来培养等速液,并且当前的工作可以进一步用于大规模培养。
一种被称为“乳白色海”的现象,这一事件首次出现在爪哇南部的海洋中,具有生物发光能力的海洋微生物。本研究旨在分析事件期间的环境状况。本研究使用了几个开放的门户数据,特别是2018年7月30日,2019年6月30日和2019年7月4日。结果显示了海面温度(SST)与叶绿素a的浓度之间的相关性。8月1日,叶绿素a的最大浓度在0.1-1.5mg/ m -3之间,随后由于SST的降低而下降和8月4日的下降。在爪哇南海发现了几种涡流和上升流。但是,海岸线部分仅在2019年7月31日至2019年8月2日可见,并于2019年8月3日褪色。印度洋东部的海洋电流系统代表了叶绿素A分布和营养成分的关键因素。养分浓度,尤其是硝酸盐,在乳白色海上事件中波动,范围为0.01-0.02mmol/m³,显示有限的变化。在这段时间内,海面温度(SST)和叶绿素a的浓度与乳白色海面积周围的纳米浮游生物的丰度相关,牛奶海域范围为0至1mg/m³。乳白色现象主要是由SST降低和叶绿素A和纳米团体的浓度增加驱动的,并具有涡流和上升的催化剂。