。CC-BY-NC-ND 4.0 国际许可证下提供的(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2025 年 1 月 8 日发布。;https://doi.org/10.1101/2025.01.08.631959 doi:bioRxiv 预印本
未充分利用/孤儿豆科植物在干旱和极度饥饿时期为资源匮乏的农村人口提供粮食和营养安全,从而挽救了数百万人的生命。豆科植物是第三大开花植物科,约有 650 个属和 20,000 个物种,分布在全球。有各种富含蛋白质的可食用豆科植物,如大豆、豇豆等;然而,由于需求不断增加,它们的消费率远远高于生产率。全球日益增长的需求从动物性蛋白质饮食转向素食性蛋白质饮食也加速了对它们的需求。在这种情况下,未充分利用的豆科植物为粮食安全、营养需求和农业发展提供了巨大的潜力。据报道,许多已知的豆科植物,如 Mucuna spp.、Canavalia spp.、Sesbania spp.、Phaseolus spp. 等,都含有相当数量的蛋白质、必需氨基酸、多不饱和脂肪酸 (PUFA)、膳食纤维、必需矿物质和维生素以及其他生物活性化合物。考虑到这一点,当前的审查重点是发现未充分利用的豆科植物作为食物、饲料和药用化学品来源的潜力,以便为解决营养不良相关问题和维持全球豆类需求提供基线数据。关于未充分利用的豆科植物的信息很少,而且仅限于具有地方或传统意义的特定地理区域。大约有 700 个属和 20,000 个物种有待驯化、改良和主流化。需要在研究、育种和开发方面做出重大努力,将现有的经过精心挑选、有前途的作物地方品种转变为具有广泛适应性和经济价值的类型
随着世界人口不断增长,农业对未来粮食供应的需求将成为农业界面临的最大挑战之一。换句话说,农业对于实现粮食安全至关重要。化肥和农药已成为植物生产的必需品,以满足人口的快速增长以及随之而来的营养需求的增加。然而,这些肥料/农药的滥用和滥用造成了许多问题,并对当今许多国家的农业生产产生了负面影响。此外,由于工业和农业的快速发展以及人口增长带来的人类压力破坏了自然生态系统,化肥、农药和重金属造成的土壤污染对环境和粮食安全构成了威胁。重金属污染也对生态系统和人类构成许多风险,影响食物链的安全、食品质量和利用土地进行农业生产的能力,进而影响粮食安全。为了应对这一挑战,需要投入大量精力关注土壤生物系统和整个农业生态系统,以便更好地了解控制农业用地可持续性的土壤、植物和微生物之间的复杂过程和相互作用。植物相关微生物在溶解矿物基质方面起着关键作用,有助于从主要矿物质中释放关键营养物质,并使土壤中提供必需的植物元素,从而提高作物生产力(Etesami 和 Adl,2020 年)。此外,这些有益微生物还参与生态系统中有机和无机化合物的降解和/或解毒(生物修复)(Etesami,2018 年)。因此,将这种植物微生物组引入农业是一种有效的方法,因为它具有长期和环境有利的机制,可以促进植物生长并保持植物健康和质量。近年来,低成本和环境友好的农业实践受到越来越多的关注。
Darryl Banjoo、Rahanna Juman、Wendy Nelson、Ruqayyah Thompson、Rosemarie Kishore、Ben Maharaj、Sheldon Ramoutar、Yasim Edoo、Denise Beckles 帕拉联邦大学 • 亚马逊:Patricia Chaves de Oliveira、Fernanda Nascimento Ufopa、Jose Eduardo Martinelli Filho • 圭亚那、苏里南、委内瑞拉:Steve Renfurm • 协调:Norbert Fenzl 撰稿人 Christopher Corbin、Darryl Banjoo 致谢 数据提供者 PBL 荷兰环境评估机构 • IMAGE-GNM 模型,Arthur Beusen • 城市废水,Peter JTM van Puijenbroek 华盛顿大学应用物理实验室 • 全球新闻模型,Emilio Mayorga 审稿人 CLME+ 项目协调单位 Laverne Walker、Patrick Debels、Martha Prada Triana RAC-CIMAB Marlen Perez Hernandez、Jesus Beltran Gonzales、Yamiris Gomez D'Angelo、Liuba Chabalina、Freddy Potrille Tito RAC-IMA Darryl Banjoo、Rahanna Juman GRID-Arendal Morten Sorensen、Thomas Maes 联合国环境规划署区域办事处(拉美和加勒比地区) Christopher Cox 联合国环境规划署全球营养物管理伙伴关系 Mahesh Pradhan、Milcah Ndegwa 联合国环境规划署/ RCU/ CAR Christopher Corbin 哥伦比亚 EAFIT 大学 Marco Tosic 帕拉联邦大学 Norbert Fenzl、Jose E. Martinelli Filho 世界资源研究所 Lauretta Burke 陆地来源(LBS)监测和
人为引起的营养富集水体富集了过多的氮(N)和磷(P)是美国面临的最普遍的环境问题之一(美国EPA,2015a)。在许多分水岭,市政和工业废水处理厂(WWTPS)可以是营养的主要来源。最新的努力来得出数字营养标准来保护水体的指定用途,这导致了限制,对于美国大多数WWTP而言,使用目前进行的治疗配置可能会遇到挑战。但是,许多利益相关者都担心与升级治疗配置有关的不良环境和经济影响可能存在明显的不良环境和经济影响,因为这些配置可能需要更多地使用化学品和能量,释放更多的温室气体,并产生更多的处理残留物来处置。
大藻的生长取决于生物学上可用的氮,例如铵和硝酸盐,使氮是大藻类最常见的生长限制因素。然而,表面微生物在促进氮转化和改善氮利用中的作用尚不清楚。在这项研究中,从U. fasciata的表面分离出228种细菌菌株,高吞吐量测序揭示了不同氮浓度下表面细菌群落组成的显着转移。关键细菌家族(如杜鹃花科和黄酮科)被确定为氮循环必不可少的。网络分析表明,杜鹃花科和黄酮科是微生物相互作用的中心节点。一个合成微生物群落(Syncom2),包括四种菌株,显着增加了U. fasciata的生物量,氮和磷的获取,其可溶性糖,蛋白质和叶绿素A水平升高了23.9-49.2%。定量逆转录聚合酶链反应(RT-QPCR)分析表明,与未经处理的对照植物相比,Syncom2增强了与光合作用相关的关键基因的表达(RBCL,1.04倍),脂质生物合成(ACCD,11.21-折叠)和生长群量path(ACCD,11.21-倍)(wer)(螺旋)。这些发现表明,Syncom2通过改善营养的获取和激活与生长相关的基因来促进U. fasciata的生长。
1。Zwart SR,Kloeris VL,Perchonok MH,Braby L,Smith SM。在ISS上长期太空飞行后,从太空食品系统中对食品中的养分稳定性进行评估。J食品科学。2009 2。Bionutrients-1:开发长期持续任务的按需营养生产系统Natalie Ball,Hiromi Kagawa,Aditya Hindupur,Kevin Sims。ICES-2020- 119 3。 Hauserman,M.R.,Ferraro,M.J。,Carroll,R.K。等。 通过多摩卡数据分析检测到的太空飞行期间,金黄色葡萄球菌的群体传感和生理学改变了。 NPJ微重力。 2024 4。 Wilson JW,Ott CM,HönerZuBentrup K,Ramamurthy R等。 太空飞行改变了细菌基因的表达和毒力,并揭示了全球调节剂HFQ的作用。 Proc Natl Acad Sci U S A. 2007 5。 Overbey,例如Saravia-Butler AM,Zhang Z,Rathi KS等。 NASA Genelab RNA-Seq共识管道:短阅读RNA-Seq数据的标准化处理。 Iscience。 2021ICES-2020- 119 3。Hauserman,M.R.,Ferraro,M.J。,Carroll,R.K。等。 通过多摩卡数据分析检测到的太空飞行期间,金黄色葡萄球菌的群体传感和生理学改变了。 NPJ微重力。 2024 4。 Wilson JW,Ott CM,HönerZuBentrup K,Ramamurthy R等。 太空飞行改变了细菌基因的表达和毒力,并揭示了全球调节剂HFQ的作用。 Proc Natl Acad Sci U S A. 2007 5。 Overbey,例如Saravia-Butler AM,Zhang Z,Rathi KS等。 NASA Genelab RNA-Seq共识管道:短阅读RNA-Seq数据的标准化处理。 Iscience。 2021Hauserman,M.R.,Ferraro,M.J。,Carroll,R.K。等。通过多摩卡数据分析检测到的太空飞行期间,金黄色葡萄球菌的群体传感和生理学改变了。NPJ微重力。2024 4。Wilson JW,Ott CM,HönerZuBentrup K,Ramamurthy R等。 太空飞行改变了细菌基因的表达和毒力,并揭示了全球调节剂HFQ的作用。 Proc Natl Acad Sci U S A. 2007 5。 Overbey,例如Saravia-Butler AM,Zhang Z,Rathi KS等。 NASA Genelab RNA-Seq共识管道:短阅读RNA-Seq数据的标准化处理。 Iscience。 2021Wilson JW,Ott CM,HönerZuBentrup K,Ramamurthy R等。太空飞行改变了细菌基因的表达和毒力,并揭示了全球调节剂HFQ的作用。Proc Natl Acad Sci U S A.2007 5。Overbey,例如Saravia-Butler AM,Zhang Z,Rathi KS等。NASA Genelab RNA-Seq共识管道:短阅读RNA-Seq数据的标准化处理。Iscience。2021
摘要:通过比较底物依赖性生长动力学,研究了 6 种具有不同生长策略的大型藻类在低氮 (N) 供应下维持生长的能力。在夏季藻类受氮限制时,通过实验确定了维持最佳生长所需的氮和 2 种慢速生长藻类的氮吸收动力学。Fucus r~resiculosus 和 Codium fragilc 以及 4 种快速生长的藻类,Chnetolnorpha Ij~~rn、Cladophora serica、Cerarn~um rubrum 和 Ulva lactuca。在藻类中维持最大生长所需的氮在藻类中相差 16 倍,其中慢速生长的藻类对氮的需求最高。短命藻类对氮的需求较高,这是因为其生长速度最高可达 13 倍,最大生长时氮含量高出 2 至 3 倍。另外,在低和高底物浓度下,快速生长的藻类吸收单位生物量铵和硝酸盐的速度比慢速生长的藻类快 4 至 6 倍,但慢速生长的藻类的最大磷吸收量与需求量的比值较大。因此,快速生长的藻类往往需要相对较高的外部无机氮浓度来达到饱和生长。在氮受限条件下,所有 6 种大型藻类都能通过短暂增强的速率吸收铵(即激增吸收)来利用高浓度铵的脉冲。然而,在较低的、自然存在的铵浓度下,吸收量仅略有增强,这表明激增吸收的生态重要性较小。我们的结果表明,在低氮供应条件下,生长缓慢的大型藻类可能比快速生长的藻类更能满足其氮需求。这与常见的观察结果一致,即营养贫乏的沿海地区主要以生长缓慢的大型藻类为主,而不是短命物种,尽管短命物种的氮吸收能力更高。
fi g u r e 2在高山草原中评估的全范围植物和土壤特性的季节性动态。属性按最大季节进行分组:(a)春季; (b)夏天; (c)秋天。在灌木膨胀下,某些特性明显更高( + s)或较低(-s)。AOA,氨氧化古细菌; AOB,氨氧化细菌; CBH,几核酸水解酶; GLC,β-葡萄糖酶; NAG,N-乙酰葡萄糖氨基酶; Per,过氧化物酶; Pho,磷酸酶;痘,苯酚氧化酶; URE,尿布; xyl,β-二基固醇酶。 出于可视化的目的,将所有变量缩放为平均值为0,标准偏差为1。 对未量化的数据进行统计分析n = 8。 有关更多详细信息,包括实际均值和SE,精确的P和χ2值,请参见表S1 – S3。AOA,氨氧化古细菌; AOB,氨氧化细菌; CBH,几核酸水解酶; GLC,β-葡萄糖酶; NAG,N-乙酰葡萄糖氨基酶; Per,过氧化物酶; Pho,磷酸酶;痘,苯酚氧化酶; URE,尿布; xyl,β-二基固醇酶。出于可视化的目的,将所有变量缩放为平均值为0,标准偏差为1。对未量化的数据进行统计分析n = 8。有关更多详细信息,包括实际均值和SE,精确的P和χ2值,请参见表S1 – S3。
摘要:背景:肥胖是一种复杂的代谢障碍,与几种疾病有关。最近,精密营养(PN)已成为一种量身定制的方法,可以提供个性化的饮食建议。目的:本综述讨论了在肥胖症和常见相关慢性疾病管理过程中应用PN时所考虑的主要内在和外在组件。结果:审查确定了三个主要的PN组成部分:基因 - 营养量相互作用,睾丸菌群和生活方式因素。遗传构成显着促进了饮食行为的个体间变化,高级基因组测序和种群遗传学有助于检测与肥胖相关的基因变异。此外,基于PN的宿主 - 微生物群评估是一种先进的治疗工具,影响了疾病控制和预防。肠道微生物的组成调节对营养建议的多种反应。几项研究强调了PN在提高饮食质量和增强肥胖患者体育锻炼的依从性方面的有效性。PN是解决与肥胖相关危险因素的关键策略,包括饮食模式,体重,脂肪,血脂,葡萄糖水平和胰岛素抵抗。结论:PN是有效管理肥胖症的可行工具,它考虑了其整合遗传和生活方式因素的能力。基于PN的方法的应用不仅可以改善当前的肥胖状况,而且还具有预防肥胖症及其相关并发症的希望。