该设备还使用每个节点中的内置电池为 NVRAM 驱动器提供电池备份。插槽 21 和 23 连接到节点 A 的内部电池设备,而节点 B 为插槽 22 和 24 供电。由于 NVRAM 驱动器包含易失性和非易失性介质,因此需要电池备份。易失性介质提供快速访问速度,并在设备正常运行时用作系统内写入缓存的备份位置。如果设备电源中断或系统关闭,则易失性写入缓存将转移到 NVRAM 驱动器内的非易失性介质。当写入缓存信息安全存储后,驱动器的电源将被切断,系统完成关机操作。NVRAM 设计和操作取代了保护 DRAM 写入缓存内容的需要。
PowerStore 的数据路径包括硬件和软件算法,它们协同工作以尽可能高效地接收和存储数据。PowerStore 的动态弹性引擎 (PowerStore DRE) 自动使用设备内的驱动器,使用系统中的所有驱动器创建适当的冗余。PowerStore DRE 支持单驱动器和双驱动器弹性。许多技术最大限度地减少了数据减少对性能的影响。写入缓存到双端口 NVRAM 驱动器,除使用镜像 DRAM 的入门级 PowerStore 500T 外,所有型号的两个节点都可以访问这些驱动器。压缩是在硬件中进行的,系统将写入以完整的 2 MB 条带形式分阶段到系统中的驱动器。重复数据删除以 4 KB 的粒度运行,并且在设备中的节点之间是全局的。
在当今的大数据时代,数据管理的挑战已大大增长。一个关键方面是数据存储的管理。随着数据量继续扩展,有效的存储管理变得越来越重要。同时,不断发展的硬件技术提供了各种存储选项,范围从HDD到SSD和NVRAM。为此,层次结构(多层)存储系统(HSS)已成为解决方案,组织了不同的存储设备,以层次结构地提供各种存储选项。但是,在优化性能和成本效益的同时管理多个存储层及其数据非常复杂。在本文中,我们讨论了层次存储系统管理中的挑战。我们总结了我们先前在应对这些挑战方面的贡献,包括基于强化学习(RL)的数据迁移策略的建议以及自主分层存储管理框架HSM-RL的设计。我们还介绍了HSM-RL在科学数据管理中的应用,以证明其适应性和可伸缩性。最后,我们结束了迄今为止的工作,并概述了未来的研究计划。VLDB研讨会参考格式:Tianru Zhang。通过加强学习自主分层存储管理。VLDB 2024研讨会:VLDB Ph.D.车间。1简介