高分辨率的天气和气候建模对于城市的日常运营和未来城市状况的计划非常感兴趣(Baklanov等,2018)。开发用于城市应用和服务的运营产品需要开发和评估下一代数值天气预测(NWP)模型,并探索了100 m的网格细胞分辨率(例如Boutle等,2016; 2016; Lean等,2019)。这些量表会提出新的挑战,因为解决了更大的异质性和城市形式和财产的复杂性,但它们提供了潜在的挑战,以提供邻国规模的信息,以支持广泛的综合城市服务(世界气象组织[WMO],2019年)。为了提供城市地区所需的更高分辨率,正在开发次级尺度模型(Joe等,2018),以在千尺度模型中筑巢。鉴于缺乏适当的常规观察结果,对城市地区模型的验证仍然是一个挑战(Grimmond&Ward,2021年)。 城市地区的任何WMO观测位置(WMO,2018a)都可能位于城市顶篷层内,而不是惯性的子层或恒定通量层(Tang等,2021)。 标准的WMO现场观测,例如位于城市公园的观测值,代表了草地,而不是在不同邻居中发生的建筑物和植被的混合。 如果使用城市冠层层观测来进行模型评估,则需要适当地对变量从惯性s层到城市冠层内部的变量进行适当的降级(例如,Blunn等,2022; Tang等,2021; Theeuwes等,Theeuwes等,2019; Wang,2014; Wang,2014)。鉴于缺乏适当的常规观察结果,对城市地区模型的验证仍然是一个挑战(Grimmond&Ward,2021年)。城市地区的任何WMO观测位置(WMO,2018a)都可能位于城市顶篷层内,而不是惯性的子层或恒定通量层(Tang等,2021)。标准的WMO现场观测,例如位于城市公园的观测值,代表了草地,而不是在不同邻居中发生的建筑物和植被的混合。如果使用城市冠层层观测来进行模型评估,则需要适当地对变量从惯性s层到城市冠层内部的变量进行适当的降级(例如,Blunn等,2022; Tang等,2021; Theeuwes等,Theeuwes等,2019; Wang,2014; Wang,2014)。公民科学天气站,例如,Netatmo(Chapman等,2017; Fenner等,2021)和WOW(Kirk等,2021) - 和WMO(2018b)改装城市地点,城市地点可以更好地代表其来源地区的土地覆盖物的混合物(Coney等,Coney等,20222222222; Corne and al。等,2008)。eddy协方差(例如,Hertwig等,2020; Masson等,2002)和大孔径闪光测定法(Saunders等,2024)传感器允许测量惯性sublayer中通量的测量,但有受限的远距离cov-cov-cov-erage Erage(Grimmond&Al a an Al an Al an Al an Al an an Al and an an an Al and and and and an。基于地面的遥感技术,例如自动激光痛和天花板和多普勒风痛,可以评估垂直轮廓,但在水平覆盖范围内仍然有限。对此类传感器的密集部署通常仅限于持续数月到几年的活动,例如,在柏林的乌尔比斯菲尔(Fenner等,2022)或巴黎的Paname中(Kotthaus等,2023年)。
ActNext (2020) 教育伴侣。https://actnext.org/research- and-projects/holistic-learning-mobile-app/ Aljohani, NR 和 Davis, HC (2013)。使用以学生为中心的移动仪表板提供即时详细反馈的学习分析和形成性评估。在第七届下一代移动应用、服务和技术国际会议论文集,IEEE。https://www.semanticscholar.org/paper/Learning-Analytics-and-Formative-Assessment-to-a-Aljohani-Davis/ 4e27f92476194013d098d37b1a8e106b171726f8 Aybek, EC 和 Demirtasli, RN (2017)。针对多分类项目的计算机化自适应测试 (CAT) 应用程序和项目反应理论模型。国际教育与科学研究杂志,3(2),475-487。Beigman Klebanov,B.,Leong,CW和Flor,M。(2015)。有监督的词级隐喻检测实验,具有具体性和重新加权示例。第三届自然语言处理隐喻研讨会论文集,11-20。计算语言学协会。Beigman Klebanov,B.,Madnani,N.,Burstein,J.和Somasundara,S。(2014)。用于对来自来源的写作进行评分的内容重要性模型。计算语言学协会第 52 届年会论文集,247-252。Ben-Simon,A.和Bennett,RE(2007)。迈向更实质性的自动论文评分。 《教学、学习与评估杂志》, 6 (1), 4 – 44。http://www.jtla.org Botarleanu, RM、Dascalu, M.、Sirbu, MD、Crossley, SA 和 Trausan-Matu, S. (2018)。ReadME – 使用 ReaderBench 框架生成个性化的论文写作反馈。在第三届智能学习生态系统和区域发展国际会议 (SLERD 2018)(第 133 – 145 页)上。丹麦奥尔堡。Castro, D.、McLaughlin, M. 和 Chivot, E. (2019) 谁将赢得人工智能竞赛:中国、欧盟还是美国?数据创新中心。 https://www.datainnovation.org/2019/08/who-is-winning-the-ai- race-china-the-eu-or-the-united-states/ Cicchinelli, A., Veas, E., Pardo, A., Pammer-Schindler, V., Fessl, A., Barreiros, C., & Lindstädt, S. (2018). 在活动流中寻找自我调节学习的痕迹。ACM 出版社。https://doi.org/10.1145/ 3170358.3170381 Condon, W. (2013). 大规模评估、本地开发的措施和论文自动评分:寻找红鲱鱼?评估写作,18,100 – 108。Cope, B., & Kalantzis, M. (2016)。大数据走进校园:对学习、评估和研究的影响。AERA Open,2(2),1-19。Crossley, SA 和 Kyle, K.(2018 年)。使用词汇复杂度自动分析工具 (TAALES) 评估写作。评估写作,38,46-50。CWPA、NCTE 和 NWP。(2011 年)。中学后写作成功国家框架。写作项目管理委员会、全国英语教师委员会和国家写作项目。http://wpacouncil。org/files/framework-for-success-postsecondary-writing.pdf Davey, T. (2011)。计算机自适应测试系统指南。州立学校校长委员会。https://files.eric.ed.gov/fulltext/ ED543317.pdf Deane, P. (2013)。论自动作文评分与现代写作观念的关系。评估写作,18,7-24。 DiCerbo, KE 和 Behrens, JT (2014)。数字海洋对教育的影响。Pearson。 Ellis, C. (2013)。拓宽学习分析的范围并提高其实用性:评估分析的案例。英国教育技术杂志,44(4),662-664。 ETS。(2018)。按国家/地区划分的 GRE 考试量。 https://www.ets.org/gre/pdf/gre_volumes_by_country.pdf Farra, N., Somsundaran, S., & Burstein, J. (2015). 使用观点及其目标对说服性论文进行评分。在第十次研讨会论文集