大多数当前的CSP植物都将硝酸盐盐混合物作为热存储介质。这些盐被用作纯粹明智的能量存储,在充电/放电周期期间,液态盐在冷水和冷罐之间抽水。由于硝酸盐降解为亚硝酸盐时发生的腐蚀引起的,这些系统限于大约560°C [2]。下一代CSP计划在更高的温度下运行,因此需要在650°C或更多的温度下运行的热量储能介质[1]。由于硝酸盐将在这些温度下分解,因此正在研究其他类型的盐,例如氟化物,氯化物和碳酸盐,以用于热量储能应用[3-7]。熔融氟化物盐已将大量研究重点视为传热液,并且是熔融盐反应器中核燃料的载体[8]。熔融氯化盐最近已经从CSP工业中获得了极大的兴趣,这主要是由于美国领导的GEN3 CSP项目,该项目旨在使用氯化物三元盐作为明智的热量储能培养基和高达800°C的温度下的热传递流体[9-12]。
热能存储引起了广泛关注,相变材料 (PCM) 因其有益的物理和化学特性而被广泛使用。虽然氮化物基盐 PCM 通常用于热能存储,但其潜热存储能力仍然有限。这项研究通过加入单层氮化硼来增强氮化物基盐用于热能存储的性能,从而提高热导率和潜热存储能力。Sn₃N₂-LiNO₃-NaCl/单层氮化硼的新型混合物具有高比热容、高潜热值和低相变温度的特点,使其成为热能存储的绝佳候选材料。在 PCM 中添加单层氮化硼可显著提高热导率,将其从 1.468 W/m·K 提高到 5.543 W/m·K。值得注意的是,这些氮化物基三元盐不会相互发生化学反应;它们的相互作用纯粹通过混合来改善热性能。该新型共混物还表现出了良好的热稳定性,在600℃时分解率仅为0.5%,熔化温度为150℃,凝固温度为130℃。三元盐的比热容达到最大值3.5 J/g·℃,表明热流速率更高,充电和放电速率也更高。复合PCM(CPCM)的储热能力在600℃时为600 kJ/kg,这些PCM的组合延长了储热时间。三元盐表现出优异的热稳定性,在100次循环中保持性能而质量没有显著减少。此外,三元盐向单层孔隙中的扩散进一步增强了其有效性。使用基于Anaconda的Jupyter Notebook和Python进行模拟分析。
1。Soll D,Chu C-F,Sun S,Lutz V,Arunkumar M,Gachechiladze M等。肿瘤微环境中的氯化钠氯化钠增强了T细胞代谢适应性和细胞毒性。 NAT免疫[Internet]。 2024; 25(10):1830–44。 可从:https://doi.org/10.1038/s41590- 024-01918-6 2。 Scirgolea C,Sottile R,De Luca M,Susana A,Carnevale S,Puccio S等。 NaCl增强了CD8(+)T细胞效应子在癌症免疫疗法中的功能。 nat免疫。 2024年10月; 25(10):1845–57。 3。 Barrett T,Riemer F,McLean MA,Kaggie J,Robb F,Tropp JS等。 用磁共振成像定量原发前列腺癌和邻近的正常前列腺组织中总细胞内钠浓度。 投资radiol。 2018年8月; 53(8):450–6。 4。 Leslie TK,James AD,Zaccagna F,Grist JT,Deen S,Kennerley A等。 肿瘤微环境中的钠稳态。 Biochim Biophys Acta -Rev Cancer [Internet]。 2019; 1872(2):188304。 可从:https://doi.org/10.1016/j.bbcan.2019.07.001 5。 Jiang W,Yin L,Chen H,Paschall AV,Zhang L,Fu W等。 NaCl纳米颗粒作为癌症治疗。 ADV MATER。 2019年11月; 31(46):E1904058。 6。 Tiriveedhi V,Ivy MT,Myles EL,Zent R,Rathmell JC,Titze J. Ex Vivo High Salt激活的肿瘤酸化的CD4+T淋巴细胞具有有效的抗癌反应。 癌症(巴塞尔)。 2021 APR; 13(7)。 7。 Basu A,Ramamoorthi G,Albert G,Gallen C,Beyer A,Snyder C等。氯化钠增强了T细胞代谢适应性和细胞毒性。NAT免疫[Internet]。2024; 25(10):1830–44。可从:https://doi.org/10.1038/s41590- 024-01918-6 2。Scirgolea C,Sottile R,De Luca M,Susana A,Carnevale S,Puccio S等。NaCl增强了CD8(+)T细胞效应子在癌症免疫疗法中的功能。nat免疫。2024年10月; 25(10):1845–57。3。Barrett T,Riemer F,McLean MA,Kaggie J,Robb F,Tropp JS等。用磁共振成像定量原发前列腺癌和邻近的正常前列腺组织中总细胞内钠浓度。投资radiol。2018年8月; 53(8):450–6。4。Leslie TK,James AD,Zaccagna F,Grist JT,Deen S,Kennerley A等。肿瘤微环境中的钠稳态。Biochim Biophys Acta -Rev Cancer [Internet]。2019; 1872(2):188304。 可从:https://doi.org/10.1016/j.bbcan.2019.07.001 5。 Jiang W,Yin L,Chen H,Paschall AV,Zhang L,Fu W等。 NaCl纳米颗粒作为癌症治疗。 ADV MATER。 2019年11月; 31(46):E1904058。 6。 Tiriveedhi V,Ivy MT,Myles EL,Zent R,Rathmell JC,Titze J. Ex Vivo High Salt激活的肿瘤酸化的CD4+T淋巴细胞具有有效的抗癌反应。 癌症(巴塞尔)。 2021 APR; 13(7)。 7。 Basu A,Ramamoorthi G,Albert G,Gallen C,Beyer A,Snyder C等。2019; 1872(2):188304。可从:https://doi.org/10.1016/j.bbcan.2019.07.001 5。Jiang W,Yin L,Chen H,Paschall AV,Zhang L,Fu W等。 NaCl纳米颗粒作为癌症治疗。 ADV MATER。 2019年11月; 31(46):E1904058。 6。 Tiriveedhi V,Ivy MT,Myles EL,Zent R,Rathmell JC,Titze J. Ex Vivo High Salt激活的肿瘤酸化的CD4+T淋巴细胞具有有效的抗癌反应。 癌症(巴塞尔)。 2021 APR; 13(7)。 7。 Basu A,Ramamoorthi G,Albert G,Gallen C,Beyer A,Snyder C等。Jiang W,Yin L,Chen H,Paschall AV,Zhang L,Fu W等。NaCl纳米颗粒作为癌症治疗。ADV MATER。2019年11月; 31(46):E1904058。6。Tiriveedhi V,Ivy MT,Myles EL,Zent R,Rathmell JC,Titze J. Ex Vivo High Salt激活的肿瘤酸化的CD4+T淋巴细胞具有有效的抗癌反应。癌症(巴塞尔)。2021 APR; 13(7)。7。Basu A,Ramamoorthi G,Albert G,Gallen C,Beyer A,Snyder C等。Basu A,Ramamoorthi G,Albert G,Gallen C,Beyer A,Snyder C等。TH细胞的分化和调节:用于癌症免疫疗法的平衡行为。 前疫苗。 2021; 12(5月):669474。TH细胞的分化和调节:用于癌症免疫疗法的平衡行为。前疫苗。2021; 12(5月):669474。
参考书目 /书目1。< / div>欧洲药典第10版。(2020)2.6.13。非菌群产品的微生物学检查:指定微生物的测试。2。美国药典42 NF 37(2019)<62>非菌群产品的微生物学检查:指定微生物的测试。3。日本药典第17版。(2017)4.05非菌群产品的微生物学检查:指定微生物的测试。4。en ISO 11133:2014+AMD1:2018。 食物,动物饲料和水的微生物学 - 制备,生产,存储和性能测试。 5。 ISO 21149:2017。 化妆品 - 微生物学 - 有氧中嗜性细菌的枚举和检测。en ISO 11133:2014+AMD1:2018。食物,动物饲料和水的微生物学 - 制备,生产,存储和性能测试。5。ISO 21149:2017。 化妆品 - 微生物学 - 有氧中嗜性细菌的枚举和检测。ISO 21149:2017。化妆品 - 微生物学 - 有氧中嗜性细菌的枚举和检测。
摘要:背景:诊断新生儿和幼儿的烙印缺陷提出了挑战,通常需要进行分子分析以进行确定的诊断。遗传物质与口腔拭子的隔离变得至关重要,尤其是在收集血液样本不切实际或易受伤害的新生儿(如新生儿)的情况下,他们的血量有限,并且对于侵入性手术而言通常太脆弱了。口头拭子样品作为DNA的极好来源,有效地克服了与罕见疾病相关的障碍。方法:在我们的研究中,我们专门解决了使用NACL程序从口服拭子样品中提取的DNA的质量和数量的确定。结果:我们将这些结果与使用商业试剂盒进行的提取进行了比较。随后,获得的材料对与诸如Prader -Willi和Angelman综合症等烙印相关的基因座进行了MS -HRM分析。结论:我们的研究强调了口头拭子样品的重要性,作为获得MS – HRM分析DNA的可靠来源。NaCl提取是一种实用且具有成本效益的方法,用于遗传研究,这有助于分子诊断,这证明对面临表征延迟的患者特别有益,最终影响了他们的治疗。
摘要:盐水环境经常在冷却和注入系统中发现。当钢暴露于类似的环境时,它会得到点腐蚀。为了防止这种现象,使用腐蚀抑制剂很重要。这项工作评估了羟基磷灰石作为钢的潜在腐蚀抑制剂的功效。这是该化合物在盐水环境中作为抑制剂的第一个应用。使用X射线衍射,傅立叶变换红外光谱,化学分析和SEM/EDX研究了合成的产品,以表征其性质和形态。通过电化学技术,包括固定极化曲线(PDP),开路电位(OCP)和电化学阻抗光谱(EIS),HAP在NaCl中的抑制效率是3%培养基。合成的产品是羟基磷灰石,CA/P比为1.67。电化学研究表明,HAP能够预防3%NaCl的腐蚀,当抑制剂浓度为100 ppm时,抑制效率超过91%。另外,抑制剂的类型主要与阴极混合。HAP分子的吸附与Langmuir的吸附等温线一致。另外,金属表面的SEM/EDX分析表明,在界面钢/NaCl上形成屏障膜,该膜由HAP的主要元素组成。理论方面是通过密度功能理论(DFT)和分子动力学(MD)模拟进行的。理论方法的结果(DFT和MD模拟)通过显示合成材料的抑制效率的类似趋势来证实所有实验结果,并表明HAP可以在3%NaCl中充当出色的钢抑制剂。
摘要:受到磷酸锂(Lifepo 4)的巨大成功的鼓励,类似的Nafepo 4被预测显示出与LifePo 4相同的特性。使用具有钙化温度的变化和起始材料作为Na 2 Co 3和NaCl的来源的SOL-GEL方法,在Maricite相中的Nafepo 4材料合成。根据X射线衍射法(XRD)表征,所得的Nafepo 4 maricite相具有40%至85%的纯度。通过扫描电子显微镜(SEM)观察到的样品中颗粒的形态和晶粒大小倾向于在较高温度下钙化时增大。钙化温度的增加增加了样品中的Nafepo 4 Maricite相。阻抗数据分析表明,使用Na 2 CO 3的Na +离子的扩散系数和样品的电导率高于NaCl。这项全面的研究提供了一种可行的方法,并为连续研究NA-ON电池开辟了新的机会。
使用碳酸钠(NACLO 4)基于琼脂 - 阿加尔(NACLO 4)的生物聚合物电解质膜的开发,使用乙烯碳酸乙酯(EC)作为原发性Na-Ion Battery S. Sowmiya a,*,*,C。Shanthi A,S.Selvasekarapandian B,C. S. Selvasekarapandian B,C a s. s. selvasekarapandian b,c a s。印度NADU,B材料研究中心,Coimbatore 641045,印度泰米尔纳德邦Bharathiar University,Coimbatore 641046,印度泰米尔纳德邦,印度泰米尔纳德邦641046,当前的研究调查了乙烯碳酸盐(EC)碳酸盐(EC)综合perch perch perch perch perch perch perch perch and agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-sod.采用便捷的溶液铸造方法来制造生物聚合物膜。制备的生物聚合物膜的特征是XRD,FTIR,DSC,AC阻抗,TGA,CV和LSV技术。X射线衍射分析(XRD)研究膜的晶体/无定形性质。傅立叶变换红外光谱(FTIR)证实了盐和聚合物之间的络合。添加钠盐并掺入增塑剂可将纯琼脂的离子电导率从3.12×10 -7 s cm -1 cm -1至3.15×10 -3 s cm -1提高。差异扫描量热法(DSC)研究玻璃过渡温度(T g)趋势,盐浓度。最高的导电生物聚合物膜的T g值为22.05°C。热重分析(TGA)检查膜的热稳定性。Wagner的DC极化技术评估了制备的膜的转移数。[4]。分别通过线性扫描伏安法(LSV)和环状伏安法(CV)研究了最高导电膜的电化学和循环稳定性。这些发现促进了具有最高性能生物聚合物膜的原代钠离子导电电池的发展。用两种不同的阴极材料(V 2 O 5和MNO 2)研究了电池的性能,当使用V 2 O 5用作阴极时,达到了3.13 V的最高显着开路电压(OCV)。(收到2023年9月13日; 2023年12月11日接受)关键词:生物聚合物膜,增塑剂,反卷积,电导率研究,环状伏安法1。正在进行研究以创建生物基的聚合物来解决环境挑战,这是当代全球目标的一部分,以为基于生物的未来做一个环保过程[1]。预计聚合物研究的增加,特别是关于生物聚合物,以满足未来的工业需求[2]。聚合物电解质(PE)的主要优势是它们的机械品质,更容易获得的薄膜制造和电化学设备。它们可以与电极材料形成良好的接触[3]。由于它们在固态电化学设备中的用途,离子传导PE引起了固态离子学的注意。聚合物研究的主要基本目标是合成具有优异离子电导率的聚合物系统。由于其强大的离子电导率,广泛的电化学稳定性和高能量密度,它们可以是固态电池中的电解质[5]。固体聚合物电解质(SPE)可以开发各种固态电化学设备,例如电池,燃料电池,传感器和太阳能电池[6,7]。生物聚合物及其基于的产品已被研究针对各种新型应用,在这些应用中,它们可以替代使用现有的
摘要:增加了从例如光伏和风能中存储间歇性可再生电力的需求,导致大量的大规模固定能量存储中的大量研发,例如,斑马电池(Na-Nicl 2固体电解质电池)。用丰富和低成本的Zn代替Ni,使斑马电池更具成本效益。然而,很少对此下一代斑马(Na-Zncl 2)电池系统进行研究,尤其是在其ALCL 3 -NACL-ZNCL 2二级电解质上。其特性(例如相图和蒸气压力)对于细胞设计和优化至关重要。在我们以前的工作中,一种用于熔融盐电解质选择的模拟辅助方法显示了其在熔融盐电池开发中的成功应用。此处使用相同的方法来研究ALCL 3 -NACL-ZNCL 2盐电解质的相图和通过事实TM和热分析技术(差速器扫描量热法(DSC)和最佳电池效果及其对电池性能的影响和放电机制的影响,其相位图和蒸气压力(差分扫描量热法(DSC)和效果。DSC和Optimelt结果表明,诸如熔化温度和相变的实验数据与模拟相图非常吻合。此外,事实TM模拟表明,随着ALCL 3的温度和摩尔分数的升高,盐蒸气压力显着增加。获得的相图和蒸气压将用于辅助电解质选择,电池设计和电池操作。