基于矢量调制器的低 RMS 相位误差移相器,适用于 KA 波段应用 Melih Gokdemir;Alessandro Fonte;Giandomenico Amendola;Emilio Arnieri 和 Luigi Boccia 用于物联网终端的 2.4GHz 电小天线 Mahmoud Abdallah 和 Al P. Freundorfer;Yahia Antar 圆极化低成本物联网电小天线 Mahmoud Abdallah 和 Al P. Freundorfera Antar CMOS 小数分频全数字锁相环 (ADPLL) 的设计和仿真 Tangus Koech 用于低于 6 GHz 5G 物联网应用的紧凑型宽带低剖面单极天线 Said Douhi 使用异构滤波器为 5G 和 WiMAX 创新设计紧凑型双工器 Soufiane Achrao;Dahbi El Khamlichi;Alia Zakriti;Moustapha El Bakkali; Souhaila Ben Haddi 使用 RFID 技术的室内定位方法比较研究 Badr Jouhar;Abdelwahed Tribak;Jaouad Terhzaz;Tizyi Hafid 微波辐射处理对野生胭脂虫 Dactylopius Opuntiae 死亡率和生育力的影响 Fatima Zahrae EL Arroud、Karim EL fakhouri、Youness Zaarour、Chaimae Ramdani、Mustapha El Bouhssini;Hafid Griguer 基于耦合线滤波器的宽带低噪声放大器 (LNA) 的设计,带有陷波滤波器以抑制不需要的频率 Faycal El Hardouzi;Mohammed Lahsaini 印刷嵌入式天线的设计、制造和验证 Julen Caballero Anton;Jose M Gonzalez-Perez;Izaskun Bustero;Marta Cabedo-Fabrés;Leire Bilbao; Jon Maudes 纳米卫星可靠天线部署系统的研究与设计 Sara Essoumati;Oulad said Ahled;Gharnati Fatima 用于 C、X 和 Ku 波段的极化捷变频率选择表面 (FSS) Shahlan Ahmad, Sr.;Adnan Nadeem;Nosherwan Shoaib 使用基于 k 折交叉验证的 ANN 设计和优化用于 28 GHz 5G mmWave 应用的十字形槽 UWB 微型贴片天线 Lahcen Sellak;Samira Chabaa;Saida Ibnyaich、Asma Khabba;Abdelouahab Zeroual;Atmane Baddou 使用基片集成波导 (SIW) 和 WCIP 方法设计和建模铁氧体循环器 Noemen Arroussi Ammar 13:30-15:00 – TLAS III 室
拉伸片材上具有热场和磁场的驻点流* 1 Yahaya Shagaiya Daniel、2 Aliyu Usman、2 Umaru Haruna 1 尼日利亚卡杜纳州立大学理学院数学科学系。 2 马卡菲谢胡伊德里斯健康科学与技术学院生物医学工程技术系。 *通讯作者电子邮箱地址:Shagaiya12@gmail.com 摘要 本研究旨在检验热辐射和磁场对拉伸片材二维驻点流的影响。通过相似变换法将控制方程转化为非线性常微分方程组,然后利用隐式有限差分方案进行数值求解。驻点参数值越高,速度分布越增大,磁场则相反。温度分布是辐射能量的增函数。 关键词:热辐射、磁场、驻点流、拉伸片材。引言考虑到流动对介质的冲击会在表面周围形成一个驻点 (Hayat 等人,2020)。流动离开介质的消失会在尾随表面上产生另一个驻点 (Khan 等人,2020)。不可压缩粘性流体在拉伸片材上的流动和传热已在工业领域的许多过程中得到研究:聚合物的机械化挤出、金属板的冷却、塑料片材的空气动力挤出等 (Daniel 等人,2017a;Khashi'ie 等人,2020;Nandepnavar 等人,2021;Daniel 等人 2017b;Nadeem 等人 2020;Daniel 等人 2019a;Ghasemi & Hatami,2021 和 Daniel 等人,2019b)。 MHD 在拉伸板上的停滞流至关重要,因为它可应用于多种工程挑战,例如金属铸造厂的快速喷雾冷却和淬火、紧急核心冷却系统、微电子冷却、熔融纺丝工艺中的聚合物挤出、玻璃制造和原油净化 (Oyelakin et al., 2020; Anuar et al., 2020; Daniel, 2015; Nasir et al., 2020; Daniel and Daniel, 2015 and Lund et al., 2020)。当科学过程在高热能下进行时,例如金属或玻璃板的冷却,热辐射影响开始显示出不容忽视的重要作用 (Daniel et al., 2017c; Zainal et al., 2021 and Chaudhary et al., 2021)。许多研究人员已经讨论了不可压缩粘性流体的 MHD 流动和传热问题,包括文献(Maqbool 2020;Daniel 等人,2017;Hussain 等人,2020;Daniel 等人,2018;Afify 等人 2020 和 Daniel 2016)等。在目前的研究中,对共轭传导-对流和辐射传热问题进行了新的驻点流和能量转换研究。磁场用于控制和操纵流动行为,以提高热导率和传热性能。对流辐射传热模型
尖峰蛋白致病性研究库Abdi A等人,“ SARS-COV-2与心肌细胞的生物相互作用:对心脏损伤和药物治疗的基本分子机制的见解。”药物。2022; 146:112518。 doi:10.1016/j.biopha.2021.112518 Aboudounya MM和RJ头,“ Covid-19和类似Toll的受体4(TLR4):SARS-COV-2可以结合并激活TLR4,以增加ACE2的表达,促进并促进并引起超in-inflammation。”介体插入式。2021; 2021:8874339。 doi:https://doi.org/10.1155/2021/8874339 Acevedo-Whitehouse K和R Bruno,“基于mRNA的疫苗疗法的潜在健康风险:一种假设:Med。假设2023,171:111015。doi:https://doi.org/10.1016/j.mehy.2023.111015 Ahn Wm等人,“ SARS-COV-2峰值蛋白会刺激鼠类和人类元群的大型型号的pkccase comcase tandy taimands comcase tangicants comcase tandys tandy ty24-NAdadphInds nodphicts tybccase。 2:175。doi:https://doi.org/10.3390/10.3390/antiox13020175 AIT-Belkacem I等,“ SARS-COV-2峰值蛋白会诱导双重性单核细胞激活,这可能会导致COVID 19的年龄偏见,” COVID 19的严重程度,”REP。2022,12:20824。doi:https://doi.org/10.1038/s41598- 022-25259-2 Aksenova ay等在Silico研究中提出的,” Int J Mol Sci。2022,23(21):13502。DOI:https://doi.org/10.3390/ijms232113502 Al-Kuraishy HM等人,“ SARS-COV-2感染患者的血液粘度的变化。”正面。Med。2022,9:876017。 doi:10.3389/fmed.2022.876017 al-Kuraishy HM等人,“ Covid-19中的溶血性贫血”。安。剧烈。Med。2022; 101:1887–1895。doi:10.1007/s00277-022-04907-7 Albornoz Ea等人,“ SARS-COV-2驱动NLRP3通过峰值蛋白中人类小胶质细胞中的nlrp3渗透性激活”,Mol。Psychiatr。(2023)28:2878–2893。doi:https://doi.org/10.1038/s41380-022-022-01831-0 Aleem A和Ahmed Nadeem,Coronavirus(Covid-19)疫苗(Covid-19)疫苗诱导的无症状血栓性血栓形成血栓形成血栓细胞(Vitt)(Vitt)(vitt)(vitt)(vaster niber Island),faster niber niber niber n eal eal elm:statpears elm:statpe elm:statpe e。 “ SARS-COV-2尖峰蛋白:发病机理,疫苗和潜在疗法”,感染49,第1期。5(2021年10月):855–876,doi:https://doi.org/10.1007/s15010-021-01677-8 Angeli Fet al。,“ Covid-19,Ace2和其他ACE2和其他血管紧张素酶的疫苗和表现。关闭“ Spike ecect”上的循环。” Eur J.实习生。2022; 103:23–28。doi:10.1016/j.ejim.2022.06.015 Angeli F等。2023年3月; 109:12-21。 doi:10.1016/j.ejim.2022.12.004 AO Z等人,“ SARS-COV-2 DELTA SPIKE蛋白增强了病毒式融合性和炎症性细胞因子的产生。” Iscience 2022,25,8:104759。DOI:10.1016/j.isci.2022.104759 Appelbaum K等人,“ SARS-COV-2 SPIKE-2 SPIKE依赖性血小板在COVID-19疫苗诱导的血小板诱导的血小板上的血小板激活中。”血液副词。2022 no。6:2250–2253。 doi:10.1182/bloodAdvances.2021005050506:2250–2253。doi:10.1182/bloodAdvances.202100505050
有两种自我注册的抗肿瘤疫苗可以在成年人群中施用,一种含有23种肺炎球菌多糖(PPV23)的血清型,另一种含有共轭多糖含有13种血清型蛋白质(PCV13)。 div>大多数工业化国家建议对老年人的普遍抗菌球菌疫苗接种,但关于最佳疫苗接种治疗的辩论很大。 div> div>选择疫苗的选择主要取决于有效性(即在随机对照测试中评估的保护作用)或两种针对肺炎肺炎肺炎和ENI的疫苗的有效性(即在观察研究中评估的保护作用)(在观察研究中评估的保护作用),并考虑了成本效率的预期。 div>
致谢 中期审查工作组受益于许多人提出的意见和观察,这些意见和观察通常非常广泛,并且总是受到高度赞赏。这些贡献的价值得到了充分的认可。在一些情况下,这些观察是深刻的;工作组总是对这些意见进行深入考虑,但有时也认识到所提出的问题无法完全纳入本次中期审查的范围。此类评论已被记录下来,以便以后再关注。
背景:有针对性的药物输送系统(TDDSS)是革命性的系统,可提高药物科学领域的治疗剂的功效和安全性。这些系统的目的是仅将药物输送到需要它的目标部位,从而增强治疗结果,同时避免不必要的全身副作用。动作机制:TDDSS通过不同的机制(例如生物缀合和纳米颗粒技术的利用)促进了特定于现场的药物。一方面,叶酸靶向的递送利用叶酸受体在癌细胞上的过表达来增加治疗剂的内在化。此外,TDDS也可以设计为对某些刺激的反应,例如pH,温度甚至酶活性,从而可以控制和延长药物解放。优于传统系统的优点:TDDSS比传统系统具有一定的好处,其优点是毒性降低,增强生物利用度和提高患者依从性。这些系统通过最大程度地减少不必要的脱靶效应,同时最大化靶标的药物浓度来增强治疗指数并降低剂量频率。挑战和未来的方向:TDDS方法可能会导致药物输送和治疗方面的突破,从而在医疗保健领域开放新的机会。目前的努力旨在优化纳米载体,采用智能交付策略以及增强个性化医学方法。创新有可能将TDDS的应用扩展到各种治疗区域,从癌症治疗到疫苗开发和基因输送。结论:TDDSS的持续进展正在彻底改变现代医学,为多样性疾病提供更安全,有效和高度特定的治疗策略。
一种用于分析盐酸imeglimin的新方法,已经开发了一种口服抗糖尿病剂,并使用高性能薄层色谱(HPTLC)对散装和片剂形式进行了验证。该方法利用特定比例的丙酮,甲醇,甲苯和甲酸和甲酸的流动相。在244 nm的光密度扫描的硅胶TLC板上实现了色谱分离,该药物显示出明显的吸光度。验证遵循ICH Q2R1指南,证明了线性,准确性,精度(内部和时间间),检测极限(LOD),定量极限(LOQ)和鲁棒性的令人满意的结果。校准曲线在1000-5000 ng/band的浓度范围内线性,回归方程为y = 2.9501x + 3834.2,相关系数(R²)为0.9942。精确研究表明,日期和日期变化的较低%RSD值,确认可靠性。LOD和LOQ分别为1074.928 ng/lot和3257.54 ng/spot。恢复研究证明了该方法的准确性,在不同的尖峰水平下,恢复值的百分比接近100%。鲁棒性测试表明该方法对实验条件的较小,故意变化的弹性,在2%的可接受极限内恢复%。开发的HPTLC方法提供了一种简单,具有成本效益和可靠的手段,用于定量分析药品配方中的盐酸含Imeglimin。
“美国城市、城镇、社区、州、县、大都市区、邮政编码、区号和学校的本地指南。” 76 次观看45 次观看49 次观看39 次观看41 次观看36 次观看36 次观看37 次观看33 次观看37 次观看35 次观看35 次观看36 次观看40 次观看34 次观看45 次观看36 次观看39 次观看27 次观看35 次观看25 次观看37 次观看35 次观看32 次观看26 次观看29 次观看41 次观看24 次观看43 次观看25 次观看35 次观看30 次观看39 次观看27 次观看27 次观看30 次观看27 次观看22 次观看31 次观看30 次观看24 次观看26 次观看26 次观看31 次观看31 次观看29 次观看22 次观看40 次观看26 次观看24 次观看30 次观看40 次观看25 次观看26 次观看25 次观看19 次观看93 次观看80 次观看69 次观看84 次观看61 次观看63 次观看70 次观看83 次观看91 次观看105 次观看52 次观看57 次观看89 次观看67 次观看74 次观看88 次观看71 次观看55 次观看82 次观看52 次观看80 次观看73 次观看49 次观看69 次观看51浏览次数56 浏览次数56 浏览次数55 浏览次数60 浏览次数41 浏览次数65 浏览次数50 浏览次数65 浏览次数50 浏览次数41 浏览次数43 浏览次数52 浏览次数45 浏览次数55 浏览次数49 浏览次数43 浏览次数52 浏览次数62 浏览次数49 浏览次数44 浏览次数 从 0 天 0 小时 00 分钟 00 秒 分享此优惠 送货需要至少 7 个工作日才能发货 购买的物品可以从我们的办公室领取或送货 物品必须在 2021 年 6 月 27 日之前领取/收到 未在 2021 年 6 月 27 日之前领取/收到的物品将被没收,不予退款 您的产品可立即领取 - 详情请参阅下文 无现金价值/无现金返还/不退款 立即检查产品;自收到产品之日起 7 天内有缺陷退货,前提是退回的物品未使用且