检测化学和生物物质,以涉及各种应用方案,例如可穿戴电子设备,智能点(POC)诊断,环境监测等。[1,2]要适当地满足这些新兴要求,理想的生化传感器应具有诸如高灵敏度,长期鲁棒性,快速响应,实时监测能力,出色的选择性,低单位成本,检测下限,较大的动态范围,低功耗等等等特性[3]但是,人类仍然需要进行陡峭的攀登之旅才能实现这些目标。值得注意的是,2019年冠状病毒病的全球大流行(Covid-19)表明,我们的技术储备在满足这种紧急,庞大和多功能的要求方面并没有充分准备,并引起了对生化感测技术的极大关注。迄今为止,包括化学主义的几种主要技术路线,[4,5] plasonic,[6,7]电化学,[8,9]声传感器,[10,11]等。已经开发出来,每个传感器中的每一个都在某些上述方面具有针对各种实际应用方案的特定优点。纳米制造技术的快速开发用于不同材料和各种结构,由于其小特征和主动结构特性,例如高地表到数量,独特的物理特性,独特的物理特性等,戏剧性地增强了这些传感设备的性能。[12–14]
摘要:二维(2D)材料中的本地带隙调整对于电子和光电设备而言至关重要,但是在纳米级实现可控制和可重复的应变工程技术仍然是一个挑战。在这里,我们通过扫描探针报告了热机械纳米引导,以在2D过渡金属二核苷剂和石墨烯中创建应变纳米图案,从而在空间分辨率下以调制的带隙启用任意模式,以降低到20 nm。2D材料通过范德华的相互作用与下面的薄聚合物层相互作用,由于加热探针的热和压痕力而变形。特别是,我们证明了钼二硫化(MOS 2)的局部带隙被空间调节高达10%,并且可以约180 MeV的幅度调整为180 MEV,以菌株的线性速率约为-70 meV。该技术提供了一种多功能工具,用于研究具有纳米尺度分辨率的2D材料的局部应变工程。关键字:2D材料,应变纳米图案,钼二硫化,局部带隙,热扫描探针光刻,尖端增强的拉曼光谱■简介
Ishaac Cands 1,2,4,Rhedeaaugif 5,Madeleine Commerc 5,Jibrand Khaliq 5,Islam ShyhaIshaac Cands 1,2,4,Rhedeaaugif 5,Madeleine Commerc 5,Jibrand Khaliq 5,Islam Shyha
摘要:人工智能在日常生活中的应用变得无处不在且不可避免。在那个广阔的领域,一个特殊的位置属于用于多参数优化的仿生/生物启发的算法,该算法在许多区域中找到了它们的使用。新颖的方法和进步正在以加速速度发表。因此,尽管事实上有很多调查和评论,但它们很快就变得过时了。因此,与当前的发展保持同步非常重要。在这篇综述中,我们首先考虑了生物启发的多参数优化方法的可能分类,因为专门针对该领域的论文相对较少,而且通常是矛盾的。我们通过详细描述一些更突出的方法以及最近发表的方法来进行。最后,我们考虑在两个相关的宽域中使用仿生算法的使用,即微电子(包括电路设计优化)和纳米光子学(包括诸如光子晶体,纳米质体的构造和水流的结构的逆设计(包括逆设计)。我们试图保持这项广泛的调查独立,以便不仅可以使用相关领域的学者,还可以使用对这个有吸引力领域的最新发展感兴趣的所有人。
为了开发具有独特性能和功能的先进/下一代材料,人们开始研究自然界中常见的分级组装。[1,2] 为了遵循模仿自然的理念,使用可再生/天然来源的构建块来开发分级结构最近成为自下而上制造领域的中心主题。纳米纤维素就是这样一种构建块,包括纤维素纳米晶体 (CNC) 和纤维素纳米原纤维 (CNF)(图 1),它由地球上最丰富的可再生聚合物纤维素组成。近年来,CNC 和 CNF 引起了人们的极大研究兴趣,广泛应用于生物医学、储能、包装、复合材料和特种化学品等多个行业。 [3–5] 这些高度结晶、高纵横比的纳米颗粒由 β (1–4) 连接的 D-葡萄糖单元的线性均聚物组成,表现出令人印象深刻的机械性能和可调的表面化学性质。鉴于 CNC 和 CNF 的高强度、尺寸各向异性和天然来源,使用纳米纤维素作为开发分级组装体的功能性构件引起了人们的极大兴趣。由于人们对纳米纤维素的广泛兴趣,之前已经发表了几篇评论,涵盖了 CNC 和 CNF 的材料特性、生产、加工、特性策略、化学改性和潜在应用,我们建议任何感兴趣的读者阅读这些评论以获取更多信息。[2–19]
i在生物学或实验相关的浓度下,通过BC-GN检测对不同血液培养基中存在的INL患者血液样本和血液培养瓶添加剂的潜在抑制作用进行了测试。研究的设计考虑到BC-GN测试样品制备过程固有地起作用,以最大程度地减少血液中存在的干扰的潜力。样本会影响测试。在存在几种内源物质的情况下,用八(8)(8)(8)(8)(8)bc-gn测试细菌靶标和六(6)个电阻标记物的一个代表性应变评估了潜在干扰物质的影响。H-恒星蛋白,甘油三酸酯,共轭和未结合的胆红素。Y-固醇和硫酸钠硫酸盐(SP)进行测试。还测试了未包含干扰物的对照样品。未观察到干扰效应。
基于石墨烯的2D纳米材料具有独特的物理化学特征,可以在各种生物医学应用中使用,包括化学治疗剂的运输和表现。在多形胶质母细胞瘤(GBM)中,肿瘤内施用的薄石墨烯氧化石墨烯(GO)纳米片在整个肿瘤体积中表现出广泛的分布,而不会影响肿瘤生长,也不会扩散到正常的脑组织中。这种肿瘤内定位和分布可以为GBM微环境的治疗和调节带来多种机会。在这里,描述了原位GBM小鼠模型中GO纳米片分布的动力学,并利用薄GOETEs作为平台的一种新颖的纳米纳米化学化学治疗方法,可用于非共价复杂的蛋白酶体抑制剂bortezomib(BTZ)。通过GO的表征:BTZ复合物,在体外持续的BTZ生物学活性在GO表面上的高负载能力。在体内,与两种原位GBM小鼠模型中的游离药物相比,BTZ复合物的单个小量内给予:BTZ复合物显示出增强的细胞毒性效应。这项研究提供了证据表明,薄和小的Goets通过在本地增加生物利用药物浓度而成为GBM治疗的纳米级平台的潜力,从而提高了治疗性的影响。
本 IWGN 研讨会报告《纳米技术研究方向》以第一份报告提供的基础为基础,并融入了纳米技术社区(联邦机构、行业、大学和专业协会)如何更有效地协调努力以开发各种革命性商业应用的愿景。它融合了 1999 年 1 月 IWGN 赞助的研讨会上由大学、行业和联邦政府的专家提出的观点。本报告确定了纳米技术领域的挑战和机遇,并概述了纳米科学、工程和技术的进步如何帮助促进我们国家的经济、确保更好的医疗保健和加强未来十年国家安全的必要步骤。
摘要:当前的欧洲(EU)政策,即绿色交易,设想化学药品的安全可持续实践,包括纳米型(NFS),在创新的最早阶段。根据设计(SSBD)框架在理论上安全且可持续的框架是从欧盟的协作努力确定的,用于定义每个SSBD维度的定量标准,即人类和环境安全维度以及环境,社会,社会和经济可持续性维度。在这项研究中,我们针对安全维度,并展示了从可发现,可访问,可互操作和可重复使用的数据得出的定量内在危害标准的旅程。数据策划并合并为开发新方法方法,即基于回归和分类机器学习算法的定量结构 - 活性关系模型,目的是预测危害类别。模型利用系统(即流体动力大小和多分散性指数)和非系统(即元素组成和核心大小) - 依赖性纳米级特征与生物学内部属性和实验性条件结合使用,用于各种银NFS,功能性抗药性抗药性纺织品和宇宙型的实验条件。在第二步中,通过利用专家推理制定的贝叶斯网络结构来获得可解释的规则(标准),然后是确定性因素。概率模型的预测能力为≈78%(所有危险类别的平均准确性)。在这项工作中,我们展示了如何从SSBD框架的概念化转变为使用务实实例的现实实现。这项研究揭示了(i)在合成阶段的安全方面考虑的定量内在危害标准,(ii)(ii)内部的挑战,以及(iii)生成和蒸馏此类标准的未来方向,这些方向可以喂养SSBD范式。具体而言,标准可以指导材料工程师合成固有的纳米形式固有更安全的NF,而在创新的最早阶段,这些NFS可以在先前合成和假设的尚未合成的nfs nfs nfs的硅化毒性筛选中快速且具有成本效率。关键字:设计,纳米型,纳米颗粒,定量结构 - 活动关系,机器学习,贝叶斯规则,内在危险标准
摘要:当前的欧洲(EU)政策,即绿色交易,设想化学药品的安全可持续实践,包括纳米型(NFS),在创新的最早阶段。根据设计(SSBD)框架在理论上安全且可持续的框架是从欧盟的协作努力确定的,用于定义每个SSBD维度的定量标准,即人类和环境安全维度以及环境,社会,社会和经济可持续性维度。在这项研究中,我们针对安全维度,并展示了从可发现,可访问,可互操作和可重复使用的数据得出的定量内在危害标准的旅程。数据策划并合并为开发新方法方法,即基于回归和分类机器学习算法的定量结构 - 活性关系模型,目的是预测危害类别。模型利用系统(即流体动力大小和多分散性指数)和非系统(即元素组成和核心大小) - 依赖性纳米级特征与生物学内部属性和实验性条件结合使用,用于各种银NFS,功能性抗药性抗药性纺织品和宇宙型的实验条件。在第二步中,通过利用专家推理制定的贝叶斯网络结构来获得可解释的规则(标准),然后是确定性因素。概率模型的预测能力为≈78%(所有危险类别的平均准确性)。在这项工作中,我们展示了如何从SSBD框架的概念化转变为使用务实实例的现实实现。这项研究揭示了(i)在合成阶段的安全方面考虑的定量内在危害标准,(ii)(ii)内部的挑战,以及(iii)生成和蒸馏此类标准的未来方向,这些方向可以喂养SSBD范式。具体而言,标准可以指导材料工程师合成固有的纳米形式固有更安全的NF,而在创新的最早阶段,这些NFS可以在先前合成和假设的尚未合成的nfs nfs nfs的硅化毒性筛选中快速且具有成本效率。关键字:设计,纳米型,纳米颗粒,定量结构 - 活动关系,机器学习,贝叶斯规则,内在危险标准