纳米抗体是从骆驼科动物中分离出来的单可变域抗体,由于其相对稳定性、易于生产和分离以及高结合亲和力,正迅速成为生物传感器中理想的识别元件。然而,实时传导纳米抗体与分析物的结合具有挑战性,因为大多数纳米抗体在识别目标时不会直接产生光或电信号。在这里,我们报告了一种制造灵敏且选择性的电化学传感器的通用策略,该传感器结合了纳米抗体,用于检测异质介质(例如细胞裂解物)中的目标分析物。石墨毡可以用重组 HaloTag 修饰的纳米抗体进行共价功能化。随后使用气相沉积工艺用一层薄薄的水凝胶进行封装,可获得封装电极,该电极在抗原结合时直接显示电流减少,而无需添加氧化还原介质。差分脉冲伏安法可在特定抗原浓度的多个电极样品中提供清晰且一致的电极电流减少。正如预期的那样,观察到的电流随抗原浓度增加而变化的情况遵循 Langmuir 结合特性。重要的是,未纯化的细胞裂解物中的选择性和可重复性靶标结合仅由封装电极证明,抗原检测限约为 30 pmol,而缺乏封装的裸电极在对照实验中会产生大量假阳性信号。© 2022 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发(CC BY,http://creativecommons.org/licenses/ by/4.0/ ),允许在任何媒介中不受限制地重复使用作品,前提是对原始作品进行适当引用。[DOI:10.1149/ 2754-2726/ac5b2e]
由NIH领导的科学家团队建立了一个小型抗体图书馆,称为合成纳米体,并用它来找到有前途的新的治疗铅来停止SARS-COV-2感染。SARS-COV-2尖峰蛋白用白色描绘,其三个受体结合结构域(R B D'S)以蓝色突出显示。r b d是在健康细胞表面与蛋白质受体ACE2结合的病毒峰值蛋白的一部分。SARS-COV-2通过ACE2进入细胞。三个纳米剂(红色)掩盖了r b d的结合部分,以防止峰值蛋白识别ACE2。这可以防止病毒进入细胞。(信用:Kedar Sharma博士,和国家环境健康科学研究所的Mario Borgnia博士。)
“随着生物制剂在治疗领域的重要性日益凸显,现在是时候研究抗体配体作为离子通道调节剂的进展了,包括多克隆抗体和单克隆抗体、纳米抗体和抗体毒素嵌合体,以及它们在免疫学、心脏病学、神经科学和肿瘤学中的应用”
摘要:骆驼源单链抗体(sdAb),又称VHH或纳米抗体,是一种独特的功能性重链抗体(HCAb)。与传统抗体相比,sdAb是一种独特的抗体片段,由重链可变结构域组成。它缺少轻链和第一个恒定结构域(CH1)。sdAb的分子量很小,仅为12~15 kDa,与传统抗体具有相似的抗原结合亲和力,但溶解度更高,在识别和结合功能性、多功能、靶向特异性的抗原片段方面具有独特优势。近几十年来,纳米抗体以其独特的结构和功能特点,被认为是传统单克隆抗体的有前途的药物和替代品。作为新一代纳米生物工具,天然和合成纳米抗体已应用于生物医学的许多领域,包括生物分子材料、生物研究、医学诊断和免疫治疗。本文简要概述了纳米抗体的生物分子结构、生化特性、免疫获取途径及噬菌体库构建等,并全面评述了其在医学研究中的应用,以期为进一步探索和揭示纳米抗体的特性和功能提供参考,并为基于纳米抗体的药物和治疗方法的开发提供良好的前景。
G蛋白偶联受体(GPCR)家族的μ阿片受体(μor)是阿片类镇痛药的分子靶标,例如吗啡和芬太尼。由于当前可用的阿片类药物的局限性和严重副作用,因此对开发新型μOR功能调节剂的兴趣很大。当今的大多数GPCR配体都是小分子,但是包括抗体和纳米体在内的生物制剂都在成为具有明显优势(例如亲和力和目标选择性)的替代疗法。在这里,我们描述了纳米型NBE,它有选择地结合μor并充当拮抗剂。我们在功能上将NBE表征为细胞外和遗传编码的配体,并通过求解NBE-µOR复合物的冷冻EM结构来揭示μor拮抗的分子基础。nbe显示出独特的配体结合模式,并通过与直角口袋和细胞外受体环的相互作用来实现μor选择性。基于由NBE组成的β-发pin回路,该环将深深插入µOR和最具结合的接触中,我们设计了保留μor拮抗作用的短肽类似物。这项工作说明了纳米构造与GPCR唯一互动的潜力,并描述了可以作为治疗性发展的基础的新型μor配体。
目的:纳米抗体的独特结构有利于开发用于核医学的放射性药物。靶向人表皮生长因子受体 2 (HER2) 的纳米抗体可用作 HER2 过表达肿瘤的成像和治疗工具。在本研究中,我们旨在描述 131 I 标记的抗 HER2 纳米抗体作为 HER2 阳性乳腺癌的靶向放射性核素治疗 (TRNT) 剂的生成。方法:使用碘法用 131 I 标记抗 HER2 纳米抗体 NM-02,并评估其体外放射化学纯度和稳定性。研究了 131 I-NM-02 在正常小鼠中的药代动力学特征。评估了 131 I-NM-02 在 HER2 阳性 SKBR3 异种移植瘤中的肿瘤蓄积、生物分布和治疗潜力;以HER2阴性MB-MDA-231异种移植瘤为对照组。结果:131I-NM-02制备简便,放化纯度高,体外稳定性好。HER2阳性荷瘤小鼠肿瘤摄取明显,血液清除快,生物分布良好。131I-NM-02能显著抑制肿瘤生长,延长小鼠寿命,器官相容性好。阴性对照组中131I-NM-02在肿瘤中蓄积作用和抑瘤作用均不明显。结论:131I-NM-02有望成为HER2阳性乳腺癌靶向治疗的新工具。关键词:人表皮生长因子受体2,纳米抗体,131I,放射性核素靶向治疗
摘要:炎症性肠病(IBD)的特征是慢性肠炎,没有治愈和有限的治疗选择,通常具有全身性副作用。在这项研究中,我们开发了一种特定于目标的系统,可以通过设计益生菌大肠杆菌Nissle 1917(ECN)来潜在地处理IBD。我们的模块化系统包括三个组成部分:基于转录因子的传感器(NORR),能够检测炎症生物标志物一氧化氮(NO),1型血素蛋白分泌系统以及由人类抗TNFα纳米型的库组成的治疗货物。尽管敏感性降低,但我们的系统表现出对NO的浓度依赖性反应,成功地分泌了与常用药物adalimumab相当的结合亲和力的功能性纳米型,如酶联免疫吸收测定和体外分析所证实。这个新验证的纳米库库扩展了ECN治疗功能。也可以在ECN中首次表征所采用的分泌系统,可以进一步改编为筛选和净化感兴趣的蛋白质的平台。此外,我们提供了一个数学框架来评估工程益生菌系统中的关键参数,包括相关分子的产生和扩散,细菌定植率和粒子相互作用。这种综合方法扩展了用于基于ECN的疗法的合成生物学工具箱,提供了新颖的零件,电路和炎症热点可调反应的模型。关键字:工程益生菌,IBD,渗透性,E。Coli Nissle 1917(ECN),一氧化氮,TNFα,纳米型■简介
Parte B. Resumen libre delcurrículumI是西班牙格拉纳达州IBS的纳米医学组织的首席研究员和负责人。我在过去30年中的主要研究重点是锥形剂的分子和细胞生物学。在此期间,HI解决了这些寄生虫生物学的不同方面。自2008年以来,作为格拉纳达大学医院的传染病部门的首席研究员,我开始了一系列研究,专注于寻求新疗法和靶向治疗非洲锥虫病。在2009年,我作为欧盟-FP7财团的合作伙伴参加了纳米纳特里普的合作伙伴。我的作用是使用单域抗体(称为纳米型)开发一种针对非洲锥虫病治疗的新药靶向方法,该方法与含有锥虫药物的纳米颗粒相结合。目前,我将这种基于纳米的技术应用于其他病原体,例如流感病毒。i是TarbrainFec财团(Euronanamed III 2018,EU H2020)的协调员,旨在开发涂有纳米生物体的药物递送纳米系统,以证明由细菌,病毒和寄生虫引起的脑感染概念。我还是3TR财团(创新药品计划(IMI2)计划14 that call H2020-JTI-IMI2-2018。我还是成本行动CM1307的成员,“针对内寄生虫引起的疾病的靶向化学疗法”。
科学研究常常受益于跨学科研究团队。然而,大多数科学家无法接触到来自多个领域的专家。幸运的是,大型语言模型 (LLM) 最近表现出令人印象深刻的能力,可以通过回答科学问题来帮助不同领域的研究人员。在这里,我们通过引入虚拟实验室来扩展 LLM 在科学方面的能力,虚拟实验室是一个人工智能与人类的研究合作,用于进行复杂的跨学科科学研究。虚拟实验室由一名 LLM 首席研究员代理组成,该代理指导具有不同科学背景的 LLM 代理团队(例如,化学家代理、计算机科学家代理、评论家代理),由一名人类研究人员提供高级反馈。我们设计虚拟实验室通过一系列团队会议进行科学研究,所有代理讨论科学议程,以及个人会议,代理完成特定任务。我们通过将虚拟实验室应用于设计与 SARS-CoV-2 最新变体的纳米抗体结合物来展示其强大功能,这是一个具有挑战性的开放式研究问题,需要从生物学到计算机科学等不同领域的推理。虚拟实验室创建了一种新颖的计算纳米抗体设计流程,该流程结合了 ESM、AlphaFold-Multimer 和 Rosetta,并设计了 92 种新纳米抗体。对这些设计的实验验证揭示了一系列功能性纳米抗体,它们在 SARS-CoV-2 变体中具有良好的结合特性。这证明了虚拟实验室能够快速做出有影响力的现实世界科学发现。特别是,两种新的纳米抗体表现出与最近的 SARS-CoV-2 JN.1 或 KP.3 变体改善的结合,同时保持与祖先病毒刺突蛋白的强结合,这表明它们是值得进一步研究的令人兴奋的候选者。
