每个学生必须诚实地追求自己的学术目标,并对所有提交的工作负责。代表他人的作品总是错的。教师必须向学术司法机构报告任何可疑的学术不诚实实例。卫生科学中心的教师(卫生技术与管理学院,护理学院,社会福利,牙科医学)和医学院必须遵循其特定于学校的程序。有关学术完整性的更多全面信息,包括学术不诚实类别,请参阅http://www.stonybrook.edu/commcms/acomcmcms/academic_integrity/index.html
• 机器人自适应计算系统 • 深度神经网络硬件 • 嵌入式多核架构的设计和编程 • 机电网络 • 认证编程语言和编译器设计基础 • 硬件建模与仿真 • 宽带光通信集成电路 • 用于通信和信号处理的集成光子设备 • 光学非经典计算简介:概念和设备 • 神经网络和忆阻硬件加速器 • 神经形态 VLSI 系统 • 物理设计 • VLSI 处理器设计
模块内容包括: - 嵌入式系统的硬件和软件实现的方法和不同方面(包括电信)。- 两种设计(共同设计)的相互影响,以优化电路设计,即通过对“纳米尺度”的大规模结构降低的新的ARARALALLE处理概念。目标:完成此模块后,学生对当前硬件系统进行了概述,特别是用于软件数字信号处理算法的各种硬件平台,并且可以根据各种标准对其进行评估(例如,灵活性,功耗)。学生可以根据算法符合硬件和软件组件的灵活性要求。他们知道提高性能并最大程度地减少功耗的策略,并可以安全地应用
模块内容包括: - 嵌入式系统(包括电信)硬件和软件实现的方法和不同方面。 - 两种设计(协同设计)的相互影响,以优化电路设计, - 通过大规模结构缩小到“纳米级”实现新的并行处理概念。 目标:完成本模块后,学生将对当前的硬件系统有一个概述,特别是用于软件实现数字信号处理算法的各种硬件平台,并可以根据各种标准(例如灵活性、功耗)对其进行评估。学生可以从算法中得出符合硬件和软件组件灵活性要求的硬件要求。他们知道提高性能和降低功耗的策略,并可以安全地应用它们
边缘设备。先进的芯片设计正在降低微电子元件、设备和系统的能耗,同时提高速度、容量、可靠性和安全性等性能。应用包括人工智能、通信、计算和传感。各种策略都已经过测试,但通过整体方法共同设计几何、材料、电路和集成,仍有很大的空间将功耗降低到接近基本极限。这项挑战赛的总体目标是探索新材料和超越 CMOS 的设备、非冯·诺依曼架构和替代信息处理范式,以大幅降低能耗,以满足智能边缘设备和电路的特定应用需求。
纳米电子学是电子学的一个分支,涉及原子或分子尺度上的物质操纵,是近几十年来技术进步的基石。随着微型化、性能提高和能效的不断提升,纳米电子学为从量子计算到可穿戴设备等各个领域的变革性应用铺平了道路。在本文中,我们将探讨纳米电子学的一些新兴趋势及其对未来技术的影响。量子计算代表了计算领域的范式转变,利用量子力学原理执行传统计算机无法处理的计算。量子计算的核心是量子比特,它们可以同时存在于多个状态,实现指数并行,并可能比传统计算机更快地解决复杂问题。在纳米电子学中,量子比特的发展在很大程度上依赖于对单个量子系统(如电子或光子)的精确控制和操纵。人们正在探索各种方法,包括超导电路、捕获离子和基于半导体的量子比特。半导体量子计算的一个有前途的方向是使用硅基量子比特。硅是传统电子学中一种成熟的材料,具有多种优势,包括与现有制造工艺的兼容性和潜在的可扩展性。研究人员正在研究自旋量子比特等技术,这些技术利用硅中电子的固有自旋来实现可靠且可扩展的量子处理器 [1]。
摘要:基于二维(2D)材料的微型和纳米机电系统(MEMS和NEMS)设备与硅基碱对应物相比揭示了新型功能和更高的灵敏度。2D材料的独特性能增强了对2D材料基于纳米机电设备和传感的需求。在过去的几十年中,使用与MEMS和NEMS集成的悬浮2D膜出现了质量和气体传感器,加速度计,压力传感器和麦克风的高性能敏感性。通过MEMS/NEMS传感器提供了积极感测的微小变化,例如在动量,温度和应变的小小变化的被动模式下传感。在这篇综述中,我们讨论了NEM和MEMS设备中使用的2D材料的材料准备方法,电子,光学和机械性能,除了设备操作原理外,制造路线。
混合纳米电子器件通过将超导体的宏观相位相干性与半导体器件的电荷密度控制相结合,为开发量子技术提供了一个有前途的平台。本论文重点研究混合纳米电子器件的建模及其在研究物质拓扑相和量子信息处理中的应用。论文的第一部分介绍了一种用于静电建模的新型无轨道方法。该方法显著提高了界面附近密度分布的精度,同时最大限度地降低了计算成本。接下来,我们使用基于对称性的非局部电导谱方法来研究多端器件中的传输测量。这种方法可以识别自旋轨道耦合的方向并检测非理想效应。然后,论文探讨了铁磁混合异质结构,它通过结合磁性绝缘体插入物来实现对有效磁场的局部控制。我们研究了超导和铁磁邻近效应的相互作用,并提出了一种用于展示拓扑超导的平面设计。我们还展示了如何使用该平台来实现可配置的 0-π 约瑟夫森结,以及如何实现非正弦电流相位关系。最后,本论文研究了以高次谐波为主的结在超导量子比特中的应用。我们提出并研究了一种耦合方案,用于在异质量子架构中纠缠奇偶校验保护的量子比特和可调谐通量的传输子。
网络定理、网络图、节点和网格分析。时域和频域响应。镜像阻抗和无源滤波器。双端口网络参数。传递函数、信号表示。电路分析的状态变量法、交流电路分析、瞬态分析。逻辑系列、触发器、门、布尔代数和最小化技术、多振荡器和时钟电路、计数器环、波纹。同步、异步、上下移位寄存器、多路复用器和多路分解器、算术电路、存储器、A/D 和 D/A 转换器。调制指数、频谱、AM 生成(平衡调制器、集电极调制器)、幅度解调(二极管检测器其他形式的 AM:双边带抑制载波、DSBSC 生成(平衡调制器)、单边带抑制载波、SSBSC 生成和相位调制、调制指数。