Nanobret™靶标参与(TE)细胞内激酶测定法在完整细胞内的精选激酶蛋白靶标处定量化合物结合。该目标参与分析基于Nanobret™系统,这是一种旨在测量活细胞中分子接近的生物发光能量转移(BRET)技术。具体而言,该测定法使用测试化合物和可渗透荧光纳米骨架™示踪剂之间的竞争位移,该曲线可与细胞中表达的Nanoluc®荧光素酶 - 激酶融合蛋白可逆地结合。纳米细胞内激酶测定和特定的激酶-Nanoluc®荧光素酶融合载体一起用于测量活细胞中的激酶化合物亲和力,占用率和停留时间。
纳米杆技术使用生物发光共振能量转移(BRET)研究活细胞中蛋白质蛋白质的相互作用。研究了成人骨形成的调节剂Schnurri-3的相互作用,与ERK-2使用了2个不同的载体。一个载体包含Schnurri-3和Nanoluc®,一种具有高效率生成光子的发光酶,第二个载体包含ERK-2 PlusHalotag®,荧光配体。当两种蛋白质接近近距离时,观察到荧光。确定了Schnurri-3-ERK相互作用抑制剂的纳米伯特分析以及纳米信号与荧光信号的比率。使用MEK在竞争相互作用的单元格中验证了这一点,如果过表达,则会降低荧光信号。
4 Robers等。“可以在具有BRET的活细胞中观察到目标参与时间和药物停留时间”自然通信2015,6:10091,可在https://www.nature.com/articles/ncomms10091 5 Dixon等人获得。“已优化了用于精确测量细胞中蛋白质相互作用的NanOluc补充报告基” ACS Chemical Biology 2015,11(2):400-408,可在https://pubs.acs.acs.org/doi/10.1021/achacschembio.5b00753
图1:用于使用各种植物物种(杨树,小麦,菠菜)的无叶绿体细胞系统的工作流,用于自动高通量零件表征。通过完整的叶绿体和随后的乳液的分离,是从populus×Canescens(Poplar),Spinacia oleracea(菠菜)和Triticum aestivum(小麦)中产生的无叶绿体细胞提取物。随后构建和测试了标准化植物杆级的14级组装库,包括各种调节元素。通过涉及非接触式液体处理程序(Echo 525,Cobra)的自动工作流程建立了无细胞的反应,以将无叶绿体细胞提取物与DNA模板和纳米型底物相结合。证明了叶绿体细胞提取物的翻译活性,我们首先旨在验证叶绿体CFE系统是否具有足够的
使用外部刺激来操纵细胞功能的能力是研究复杂生物学现象的有力策略。调节细胞环境功能的一种方法是分裂蛋白。在这种方法中,生物活性蛋白或酶是碎片的,因此仅在特定刺激下重新组装。尽管有许多工具可诱导这些系统,但自然已经提供了扩展分裂蛋白质工具箱的其他机制。在这里,我们展示了一种使用磁刺激来重构分裂蛋白的新方法。我们发现电磁感知基因(EPG)因磁场刺激而改变构象。通过将某个蛋白质的分裂片段融合到EPG的两个末端,可以将片段重新组合成由于构象变化而引起的磁刺激的功能蛋白。我们用三种独立的分裂蛋白显示了这种作用:纳米核,APEX2和单纯疱疹病毒型1胸苷激酶。我们的结果首次表明,只有用磁场才能实现分裂蛋白的重建。我们预计这项研究将是未来磁性诱导的分裂蛋白设计的起点,用于细胞扰动和操纵。通过这项技术,我们可以帮助扩展分裂蛋白质平台的工具箱,并可以更好地阐明复杂的生物系统。
