1加州大学洛杉矶分校生物工程系,加利福尼亚州洛杉矶,90095年,美国2,加利福尼亚州洛杉矶大学,加利福尼亚大学90095的加利福尼亚大学,洛杉矶分校的戴维·盖芬医学院儿科,加利福尼亚州洛杉矶大学,3美国3. 3. 3.美国3号,洛斯科群岛,加利福尼亚州。 United States 4 Cystic Fibrosis Foundation, Cystic Fibrosis Foundation Therapeutics Laboratory, Lexington, MA, 02421, United States 5 Department of Pediatrics, School of Medicine, University of California, San Diego, San Diego, California 92103, United States 6 Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, United States 7加利福尼亚大学分子和医学药理学系,洛杉矶分子,加利福尼亚州洛杉矶90095,美国8加利福尼亚纳米系统研究所,加利福尼亚大学,洛杉矶分校,洛杉矶,洛杉矶,加利福尼亚州90095摘要
大学,B.G Nagar,卡纳塔克邦571448,印度摘要脂质体,聚合物纳米颗粒和乳液是其他流行的胶体载体的替代品。由于其优势,固体脂质纳米颗粒是在1990年代初开发的,包括受控药物释放,聚焦药物输送和出色的耐用性。在本文中总结了许多用于制造固体脂质纳米颗粒和赋形剂(包括膜承包商技术)的方法,以及它们可能的好处和缺点。固体脂质纳米颗粒(SLN)稳定性依赖于随着时间的推移维持粒径,药物封装和完整性。表面活性剂和脂质等赋形剂会影响稳定性,从而阻止聚集和氧化。干燥技术(例如喷雾干燥和冻干)通过将SLN转换为固体形式,增强稳定性,而脂质组成和药物脂质兼容性是至关重要的因素。因此,对所采用的工具技术以及与SLN制造相关的困难进行了彻底检查。特定的重点放在SLN中的SLN释放模式和药物整合模型上。详细介绍了SLN的主要用途,包括靶向药物输送以及SLN评估中使用的分析方法。这项工作的主要目的是对固体脂质纳米颗粒的详细概述,包括生产方法,表征和给药途径。还包括对SLN输送机制的组成部分和载体的体内命运的讨论。本文的主要关注点是固体脂质纳米颗粒(SLN)。关键字:固体脂质纳米颗粒,固体脂质,表面活性剂,胶体药物载体和药物掺入。引言在生物技术,生物医学工程和纳米技术等领域的进步显着促进了新型药物输送系统的快速增长。纳米技术被广泛用于几种最现代的配方技术中,这需要携带API的纳米结构的发展。纳米技术涉及从1到100纳米的结构进行研究和使用。使用受管制和专注的药物输送机制,纳米技术的主要目标是尽快诊断出实际和迅速的诊断,并像实用性一样有效,安全地对待。纳米颗粒,固体脂质纳米颗粒,纳米悬浮,纳米乳胶,纳米晶体和其他药物输送系统是纳米技术原理创建的一些最受欢迎的药物。固体脂质纳米颗粒(SLNS)于1991年首次开发,比传统胶体载体(如乳液,脂质体和聚合物微粒和纳米颗粒)具有优势。(Khatak等,N.D.2013)
植物病毒纳米粒子 (VNP) 成本低廉、可靠且可重复使用,已成为纳米医学(尤其是癌症治疗)中多功能且有前途的平台。这些生物纳米结构具有独特的物理化学特性,包括生物相容性、生物降解性和结构均匀性,使其成为靶向药物输送的理想候选材料。此类纳米粒子能够封装化疗剂并与肿瘤特异性配体功能化,有助于精确输送到癌组织,最大限度地减少脱靶效应并提高治疗效果。此外,植物病毒载体 (VLP) 是引起抗肿瘤免疫力的有吸引力的选择,因为它们无疑是安全、无害的,适合大规模生产和药理学适应。本综述深入探讨了植物病毒纳米粒子的分子结构、其功能修饰以及它们与癌细胞相互作用的机制。此外,它还重点介绍了临床前研究和新兴临床应用,解决了将 VNP 从实验室转化为临床的机遇和挑战。通过探索 VNP 的抗癌潜力,本文旨在强调其在塑造可持续植物源肿瘤纳米技术未来方面的作用。
氧化铁纳米颗粒是非常有用的材料,因为它们具有珍贵和潜在的应用,丰度,较低的加工成本,稳定性,环境友好的功能和生物相容性[1]。近年来,α-FE 2 O 3已广泛应用于催化剂,气体传感器,色素,光学和电磁,药物递送等,因为它们的增强特性归因于其各种结构[2]。氧化铁纳米颗粒已经通过各种方法合成,但是开发易于环保和环保的合成方法至关重要[3]。赤铁矿(α-FE 2 O 3)的带隙为1.9-2.2 eV,可以充当非常好的半导体催化剂[4]。在合成过程中,材料的带隙的变化可能有助于进一步改善其生物医学应用和光学特性[5]。纳米化材料的最新发展显示出多种用途,例如可充电电池,超级电容器,磁性材料,照片催化降解和电极材料[6]。铁的氧化物以三种常见形式出现,即赤铁矿,磁铁矿和磁铁矿,其中赤铁矿(α-fe 2 O 3)是
聚苯胺纳米颗粒的电沉积作为超级电容器应用的高性能电极Radhika S. Desai 1,Vinayak S. Jadhav 1,Divya D LAD 1,Pramod S. Patil 2,3和Dhanaji S. Dalavi 1,Dhanaji S. Dalavi 1,*抽象导电聚合物的大量关注能量存储材料,以吸引能量存储材料。在这项研究中,我们提出了一种直接且无结合的方法,用于在钢基材上进行聚苯胺(PANI)膜的电沉积。通过优化沉积时间,我们成功合成了Pani纳米颗粒,从而导致了独特的形态和电化学特性。全面的结构和物理化学表征表明,在最佳沉积时间制备的Pani 15薄膜在1 M硫酸(H₂SO₄)电解质中以10 mV s -1的扫描速率显示出632.56 F G -1的显着特异性电容。这项研究展示了一种实用的方法,用于设计和合成高级电极材料,为增强储能应用中的性能铺平了道路。我们的发现强调了电沉积PANI膜作为超级电容器和其他相关技术的有效材料的潜力。
摘要:本研究计划利用印度楝花提取物生物合成 ZnONPs,以预测其抗菌和抗真菌活性。用紫外-可见光谱 (UV-vis)、X 射线衍射仪 (XRD)、傅里叶变换红外光谱 (FT-IR)、扫描电子显微镜 (SEM) 和 EDAX 对用印度楝花提取物合成的 ZnONPs 进行了表征。本研究还涵盖了光催化降解活性 (UV-vis)。XRD 研究显示了 ZnONPs 的晶体结构。SEM 研究给出了粒子聚集的概念。使用圆盘扩散法,在含有印度楝花提取物的 ZnONPs 的抗菌和抗真菌活性中获得了最大抑制区。关键词:ZnO 纳米粒子 (NPs)、印度楝花提取物 (NFE)、光催化降解活性、抗菌和抗真菌活性
绿色纳米技术的发展引起了研究人员的极大关注,特别是在纳米颗粒的生态合成方面。这项研究介绍了使用山茶菜叶片中提取物的提取物的稳定氧化锌纳米颗粒(ZnO NP)的生物合成。使用紫外线可见光谱(UV-VIS),红外光谱(IR)和X-Ray衍射(XRD)分析来表征合成的纳米颗粒。结果表明,茶花叶提取物有效地降低了锌离子形成氧化锌纳米颗粒。XRD分析证实了ZnO的晶体结构,纳米颗粒的尺寸范围为26-38 nm。这种生物合成方法提供了一种快速,可持续和环保的方法来产生稳定的氧化锌纳米颗粒,从而在各个领域提供了潜在的应用。©2025 SPC(SAMI Publishing Company),《亚洲绿色化学杂志》,用于非商业目的。
在天然聚合物中,壳聚糖作为化疗药物的药物输送系统引起了人们的特别关注 (7)。壳聚糖源自几丁质的脱乙酰化过程,是一种用途广泛的氨基多糖聚合物,大量存在于节肢动物的外骨骼和真菌的细胞壁中。其独特的属性,包括高载药量、持续循环、多功能性、在肿瘤部位精确释放药物、减轻对健康细胞的毒性、良好的靶向能力、生物相容性、生物降解性、抗菌和抗肿瘤特性以及细胞膜通透性,使其成为一种有吸引力的选择 (8)。化学改性的壳聚糖衍生物已显示出令人鼓舞的结果,可有效输送治疗剂,同时减少副作用。此外,壳聚糖在肿瘤部位的积累可以增强对癌细胞的免疫反应,并阻止肿瘤的生长和扩散。因此,由于具有抗肿瘤和止血活性且毒性极小,壳聚糖被认为是一种安全且生物相容的生物医学应用工具。壳聚糖的活性氨基易于与功能团连接,增强了其作为生物聚合物的多功能性 (7)。
摘要 随着纳米粒子在研究领域的应用越来越受到关注,本研究旨在评估两种植物来源凤凰木和白菜的化学和绿色合成氧化锌纳米粒子 (ZnO NPs) 的体外抗菌特性。叶提取物中的生物活性化合物可用于稳定纳米粒子。使用紫外-可见分光光度法 (UV-vis)、X 射线衍射 (XRD) 和扫描电子显微镜 (SEM) 来阐明合成的 ZnO NPs 的光学和结构特性。通过琼脂盘扩散试验评估了 ZnO NPs 对两种致病菌株的体外抗菌潜力:蜡状芽孢杆菌(一种革兰氏阳性动物病原体)和丁香假单胞菌(一种革兰氏阴性植物病原体),这是一种全面的方法。在 250 至 400 nm 范围内测量紫外-可见光谱,并通过 XRD 分析晶体结构。能量色散 X 射线光谱 (SEM-EDS) 分析证实了合成的 ZnO NPs 的所有三个样品的纳米结构具有部分纳米薄片和聚集体。D. elata ZnO NPs 对两种细菌菌株的抗菌活性相对高于 G. cusimbua ZnO NPs。因此,植物基纳米粒子可能是开发多功能且环保的生物医学产品的绝佳策略。由于它们具有预先存在的药用特性,它们具有额外的优势,这使得它们成为广泛使用的化学合成纳米粒子的更合适的替代品。关键词:凤凰木、白菜、氧化锌纳米粒子、抗菌活性、蜡状芽孢杆菌、丁香假单胞菌。
生物技术,药房,农业和健康领域都可以从纳米科学和纳米技术的进步中受益匪浅。二氧化钛(TiO2)纳米颗粒的合成,特征和抗菌质量是在绿色合成过程中使用木薯叶制成的,是2021年9月至2021年6月之间进行的这项工作的主要目标。使用四种方法分析二氧化钛纳米颗粒的结构:FTIR,XRD和SEM。根据FTIR研究,TIO2在1500–1600 cm-1处表现出拉伸振动,紫外线吸收峰在250至400 nm之间。纳米颗粒直径范围为145.6至205.91 nm。使用SEM对它们进行了形态学检查。井扩散方法用于评估TiO2纳米颗粒对革兰氏阳性(faecoccus faecalis,葡萄球菌)和革兰氏阴性(E. coli,pseudomonas oferuginosa)细菌的抗菌活性。根据结果,根据不同浓度,最大抑制区为26±0.76 mm,21±1 mm和12±0.95 mm。根据结果,TIO2纳米颗粒比革兰氏阴性细菌显示出比革兰氏阳性细菌更有效的抗菌活性。