机器人驱动的神经物理学的出现 - 在康复方案中已大大减少了恢复时间。尤其是,在基于机器人的外骨骼中集成的预先致动和感应能力通过高度强烈和重复的疗法促进了受影响的四肢的活动性。这提高了治疗的精度,并提供了一种简单的方法,用于构成评估偏见进步所需的定量数据。文献中重要的作品表明,在使用这种机器人设备的同时,在势后患者中,基于临床上LIMB的迁移率有显着改善(Abdullah等,2011)。几种设备专门为手动运动障碍患者设计。这些设备包括矫形器,外骨骼和末端效应器设备(Mayer等,2022)。矫形器提供静态支持,而电动外骨骼则可以被动和主动治疗练习
摘要:传统的害虫管理策略,例如不加区分的农药使用,具有不利的环境和人类健康影响。作为可持续的替代方案,这项研究重点是使用纳米传感器检测stink Bugs发布的半化学物质,包括信息素和防御性化合物。这些纳米传感器具有聚苯胺和银(Pani.ag)的纳米杂化层以及聚苯胺和氧化石墨烯(PANI/GO)的纳米复合材料。The study explores the detection of synthetic semiochemicals, including cis and trans bisabolene epoxides, ( E )-2-hexanal, ( E )-2-decenal, ( E )-2-octenyl acetate, and ( E )-2-octenal semiochemicals emitted by Nezara viridula (Southern green stink bug) in the real environment.感应层的表征显示出pani.ag和pani/go层之间的亲水性和表面粗糙度差异。当暴露于顺式和反式双氧化物氧化物,(E)-2-己酸和(E)-2-二烯类等合成化合物时,纳米传感器显示出明显的响应,而PANI/GO表现出较高的敏感性。谐振频率移动与化合物的浓度相关,强调了这些传感器在检测低浓度的情况下的潜力,分别低于0.44和1.15 ng/ml。对大豆植物进行的真实环境测试表明,纳米传感器有效检测到了病毒乳杆菌成年人发出的半化学物质,尤其是在男性 - 雌性夫妇的情况下,强调了其对农业害虫监测的潜力。这些发现支持使用这些纳米传感器来早期检测有害生物活动,从而为综合害虫管理提供了积极的方法。关键字:纳米传感器,害虫管理,臭虫,半化学■简介
摘要:在这项工作中,使用简单的溶剂热技术制备了UIO-66-NH 2 /GO纳米复合材料,并使用现场发射扫描电子显微镜(FE-SEM),能量分散性的X射线光谱镜(EDS)和X射线散布(X-Ray衍射(XRD)对其结构和形态进行了表征。提出了一种用于检测表蛋白(EP)的增强的电化学传感器,该传感器利用UIO-66-NH 2 /GO纳米复合材料修饰的筛网印刷石墨电极(UIO-66- NH 2 /GO /SPGE)。制备的UIO-66-NH 2 /GO纳米复合材料改善了SPGE对EP的氧化还原反应的电化学性能。在优化的实验条件下,该传感器显示出明显的检测限制(LOD)为0.003 µm,线性动态范围为0.008至200.0 µm,提供了一个高功能的传感EP平台。此外,利用差分脉冲伏安法(DPV)研究了在UIO-66-NH 2 /GO /SPGE表面上研究EP和拓扑替康(TP)(TP)的同时进行电催化的氧化。DPV测量结果表明存在EP和TP的两个明显的氧化峰,峰电势分离为200 mV。最后,在药物注射中,成功使用了UIO-66-NH 2 /GO /SPGE传感器来对EP和TP进行定量分析,从而产生了高度令人满意的结果。
在接近驱动的感应中,探针和分析物之间的相互作用通过导致两个探针成分或信号部分的距离变化而产生可检测的信号。通过将此类系统与基于DNA的纳米结构,高度敏感,特定和可编程的平台进行连接。从这个角度来看,我们描述了在接近驱动的纳米传感器中使用DNA构建块的优点,并概述了该领域的最新进展,从传感器到迅速检测到食物中的农药到鉴定血液中罕见癌细胞的探针的传感器。我们还讨论了当前的挑战,并确定需要进一步发展的关键领域。©2023作者。由IOP Publishing Limited代表电化学学会出版。这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。[doi:10.1149/2754-2726/ace068]
为了研究纳米结构对其环境的影响以及纳米结构附近电磁场增强的影响,人们广泛用于开发各种方法,如表面增强拉曼光谱 (SERS)。然而,识别层和金属纳米粒子之间的接口仍然是一个关键步骤。开发简单、稳健、可重复但高性能且可控制功能化的制造工艺,对于当今的实际应用来说仍然是一个挑战。在潜在的识别材料中,分子印迹聚合物 (MIP) 是首选材料。[4,5,6] 与生物抗体-抗原系统相比,它们的制备成本低且合成相对简单,因此它们确实对 (生物) 传感应用很有意义。[7,8,9] MIP 的其他优点包括其机械和化学稳定性以及易于制造,这使得这种材料更耐用、可重复使用且易于集成到标准流程中,如传感器开发。 MIP 是通过围绕目标分子或衍生物聚合而构建的聚合物材料,充当分子模板。绝大多数 MIP 是通过乙烯基单体的自由基聚合合成的。首先,模板和功能单体之间通过可逆范德华力、离子键、氢键、配位键和/或共价键形成复合物。[10] 加入交联剂单体和聚合引发剂。[4,10,11,12] 然后通过热、光化学或氧化还原途径进行聚合。交联后,通常在酸性介质中冲洗 MIP,以削弱模板和聚合物之间的键,从而释放模板并显示分子印迹。[11,13] 光化学途径有几个优点。其中包括利用光化学反应的时空控制原位生产 MIP。 [14] 例如,使用纳米晶体作为单独的光源,通过局部引发聚合反应,合成了涂有 MIP 的荧光纳米晶体复合材料。[15,16]
摘要:快速检测氢气泄漏或其在不同环境中的释放,尤其是在大型电动汽车电池中,是感应应用的主要挑战。在这项研究中,详细报告并详细讨论了ZnO:EU纳米线阵列的形态,结构,化学,光学和电子特征。尤其是,研究了电化学沉积过程中不同欧盟浓度的影响以及感应特性和机制。令人惊讶的是,通过在沉积过程中仅使用10μMEU离子,与未源性ZnO纳米线相比,气体响应的值增加了近130倍,我们发现单个ZnO:EU纳米线设备的H 2气体响应约为7860。此外,用紫外线(UV)光和一系列测试气体测试了合成的纳米线传感器,显示了约12.8的UV响应性,对100 ppm H 2气体的uv响应性良好。显示出双模式纳米传感器可同时检测紫外线2气体,以选择性检测紫外线照射期间H 2及其对感应机制的影响。这里的纳米线传感方法证明了使用如此小的设备检测到苛刻的小规模环境中的氢泄漏的可行性,例如,在移动应用程序中堆叠了电池组。此外,通过基于密度的功能理论模拟来支持所获得的结果,该模拟强调了稀土纳米颗粒在氧化物表面上的重要性,以提高气体传感器的灵敏度和选择性,即使在室温下,也允许,例如,允许较低的功耗消耗和较低的量。关键字:EU 2 O 3,ZnO,传感器,氢,电化学沉积