为了研究纳米结构对其环境的影响以及纳米结构附近电磁场增强的影响,人们广泛用于开发各种方法,如表面增强拉曼光谱 (SERS)。然而,识别层和金属纳米粒子之间的接口仍然是一个关键步骤。开发简单、稳健、可重复但高性能且可控制功能化的制造工艺,对于当今的实际应用来说仍然是一个挑战。在潜在的识别材料中,分子印迹聚合物 (MIP) 是首选材料。[4,5,6] 与生物抗体-抗原系统相比,它们的制备成本低且合成相对简单,因此它们确实对 (生物) 传感应用很有意义。[7,8,9] MIP 的其他优点包括其机械和化学稳定性以及易于制造,这使得这种材料更耐用、可重复使用且易于集成到标准流程中,如传感器开发。 MIP 是通过围绕目标分子或衍生物聚合而构建的聚合物材料,充当分子模板。绝大多数 MIP 是通过乙烯基单体的自由基聚合合成的。首先,模板和功能单体之间通过可逆范德华力、离子键、氢键、配位键和/或共价键形成复合物。[10] 加入交联剂单体和聚合引发剂。[4,10,11,12] 然后通过热、光化学或氧化还原途径进行聚合。交联后,通常在酸性介质中冲洗 MIP,以削弱模板和聚合物之间的键,从而释放模板并显示分子印迹。[11,13] 光化学途径有几个优点。其中包括利用光化学反应的时空控制原位生产 MIP。 [14] 例如,使用纳米晶体作为单独的光源,通过局部引发聚合反应,合成了涂有 MIP 的荧光纳米晶体复合材料。[15,16]
神经递质多巴胺是从称为静脉曲张的离散轴突结构中释放出来的。它的释放在行为中至关重要,并且与普遍的神经精神疾病有关。现有的多巴胺检测方法无法检测和区分离散的多巴胺释放事件与多个静脉曲张。这阻止了对离散静脉曲张种群中多巴胺释放的理解。使用近红外荧光(980 nm)多巴胺纳米传感器“油漆”(andromeda),我们表明动作电位引起的诱发的多巴胺释放是高度异质的,并且还需要分子启动。使用仙女座,我们可以在具有高时间分辨率(15张图像/s)的单个成像场中同时以多巴胺能静脉曲张的形式可视化多巴胺释放。我们发现,多巴胺释放的“热点”是高度异质性的,仅在所有静脉曲张的17%处被检测到。在缺乏Munc13蛋白的神经元中,在电刺激过程中废除了多巴胺释放的神经元,这表明多巴胺释放需要囊泡启动。总而言之,仙女座揭示了多巴胺释放的时空组织。
摘要:在这项工作中,使用简单的溶剂热技术制备了UIO-66-NH 2 /GO纳米复合材料,并使用现场发射扫描电子显微镜(FE-SEM),能量分散性的X射线光谱镜(EDS)和X射线散布(X-Ray衍射(XRD)对其结构和形态进行了表征。提出了一种用于检测表蛋白(EP)的增强的电化学传感器,该传感器利用UIO-66-NH 2 /GO纳米复合材料修饰的筛网印刷石墨电极(UIO-66- NH 2 /GO /SPGE)。制备的UIO-66-NH 2 /GO纳米复合材料改善了SPGE对EP的氧化还原反应的电化学性能。在优化的实验条件下,该传感器显示出明显的检测限制(LOD)为0.003 µm,线性动态范围为0.008至200.0 µm,提供了一个高功能的传感EP平台。此外,利用差分脉冲伏安法(DPV)研究了在UIO-66-NH 2 /GO /SPGE表面上研究EP和拓扑替康(TP)(TP)的同时进行电催化的氧化。DPV测量结果表明存在EP和TP的两个明显的氧化峰,峰电势分离为200 mV。最后,在药物注射中,成功使用了UIO-66-NH 2 /GO /SPGE传感器来对EP和TP进行定量分析,从而产生了高度令人满意的结果。
简介:对月球挥发物的研究可以提供有关陆地行星,尤其是地球的起源和演变的重要见解。尽管地质过程已经破坏了地球早期的早期结构证据,但月亮仍保留了较早时期的信息。此外,被困在月球杆上的挥发物可以提供从各种来源(包括彗星,小行星,太阳风相互作用和内部量大)的太阳系挥发物的前提记录。尽管Artemis计划和商业月球支付服务(CLP)提供了前所未有的研究,以研究月球并获得有关我们太阳系的见解,但这些计划下的任何降落都将释放大量的非本地票价。这些挥发物可以在Lunar表面上运输,并沉积在冷陷阱中,影响了本地挥发物的测量结果1。从着陆器羽流中的结果物种之一是水蒸气,无论是在数量及其与月球岩石的相互作用方面。多项研究模拟了水分子从着陆器排气到月球岩石的吸附,并在时间2-4的时间内将其亚分子解吸到月球层。但是,我们没有太多的实验数据来验证假设并证实了这些模型中的任何一个。高度敏感,对挥发物的原位测量对于更好地理解羽状表面相互作用(PSI)和着陆器产生的挥发物的影响。
研究、开发、测试和评估,陆军 5 0602105A 纳米传感器制造研究 4,000 肯尼迪马萨诸塞州洛厄尔大学高速率纳米制造中心 马萨诸塞州洛厄尔
纳米探测器具有测量有关纳米材料和识别分析物的物理,化学,生物或环境信息的潜力,称为纳米传感器。通过高度敏感,特异性,准确,稳定的纳米估算器对数据转换为数据的信息有效地分析和解释,其成功归因于其高表面积与体积比。Nanosensor fabrication is an energy efficient, eco-friendly process and a promising tool for the sustainability of agro eco regimes.. Based upon criteria of detection, nanosensors can be electrochemical, electromagnetic, thermal, calorimetric, plasmonic, aptasensors, piezoelectric, optical, hydrogen nanosensors, carbon based nanosensors,非金属纳米传感器,MOF(金属有机框架),FRET(荧光共振能量传递),石墨烯,CNT(碳纳米管),纳米座量等。纳米传感器在医疗保健,安全,植物健康,污染,交通甚至人类呼吸等各个领域中发现了广泛的应用。有希望的工具仍然需要调查,基于纳米传感器的应用程序需要进一步探索。关键字:纳米传感器(NS),量子点(QD),纳米管(NTS),纳米线(NW),纳米片(NS)(NS),Graphene,Nanodiamond。
摘要:精确的纳米结构几何形状使纳米传感器能够将光学生物分子传递到活细胞内环境,这对于精确的生物和临床治疗非常有吸引力。然而,由于缺乏设计指南来避免光学力和金属纳米传感器在传递过程中产生的光热之间的固有冲突,利用纳米传感器通过膜屏障进行光学传递仍然很困难。在这里,我们进行了一项数值研究,报告了通过设计纳米结构几何形状来显著增强纳米传感器的光学穿透性,以最小化光热产生以穿透膜屏障。我们表明,通过改变纳米传感器的几何形状,可以最大化穿透深度,同时可以最小化穿透过程中产生的热量。我们通过理论分析证明了角旋转纳米传感器对膜屏障产生的横向应力的影响。此外,我们表明,通过改变纳米传感器的几何形状,最大化纳米颗粒-膜界面处的局部应力场使光学穿透过程增强了四倍。由于其高效率和稳定性,我们预计纳米传感器到特定细胞内位置的精确光学穿透将有利于生物和治疗应用。
摘要:连续体(FW-BIC)中的Friedrich – Wintgen结合状态在波物理现象的领域特别感兴趣。它是通过属于同一腔的两种模式的破坏性干扰来诱导的。在这项工作中,我们通过分析和数值显示了FW-BIC在T形腔中的存在,该腔由长度为d 0的存根d 0和两个长度d 1和d 2的侧向分支,该腔附着于限定的波导上。整个系统由在电信范围内运行的金属 - 绝缘子 - 金属(MIM)等离子波导组成。从理论上讲,当d 1和d 2相称时,这两个分支会诱导BIC。后者独立于D 0和有限的波导,其中T结构被移植了。通过打破BIC条件,我们获得了等离子诱导的透明度(PIT)共振。坑的共振对波导的介电材料的敏感性可能会被利用,以设计适合感应平台的敏感纳米传感器,这要归功于其很小的足迹。灵敏度为1400 nm/riU,分辨率为1.86×10 - 2 RIU显示出高度的性能水平。此外,该结构也可以用作生物传感器,在其中我们研究了人体中浓度的检测,例如Na +,K +和葡萄糖溶液,这些敏感性分别可以达到0.21、0.28和1.74 nm DL/G。我们设计的结构通过技术发展,并且具有良好的应用前景,作为生物传感器,可检测血红蛋白水平。通过Green功能方法获得的分析结果通过使用COMSOL多物理学软件基于有限元方法来验证。
摘要:快速检测氢气泄漏或其在不同环境中的释放,尤其是在大型电动汽车电池中,是感应应用的主要挑战。在这项研究中,详细报告并详细讨论了ZnO:EU纳米线阵列的形态,结构,化学,光学和电子特征。尤其是,研究了电化学沉积过程中不同欧盟浓度的影响以及感应特性和机制。令人惊讶的是,通过在沉积过程中仅使用10μMEU离子,与未源性ZnO纳米线相比,气体响应的值增加了近130倍,我们发现单个ZnO:EU纳米线设备的H 2气体响应约为7860。此外,用紫外线(UV)光和一系列测试气体测试了合成的纳米线传感器,显示了约12.8的UV响应性,对100 ppm H 2气体的uv响应性良好。显示出双模式纳米传感器可同时检测紫外线2气体,以选择性检测紫外线照射期间H 2及其对感应机制的影响。这里的纳米线传感方法证明了使用如此小的设备检测到苛刻的小规模环境中的氢泄漏的可行性,例如,在移动应用程序中堆叠了电池组。此外,通过基于密度的功能理论模拟来支持所获得的结果,该模拟强调了稀土纳米颗粒在氧化物表面上的重要性,以提高气体传感器的灵敏度和选择性,即使在室温下,也允许,例如,允许较低的功耗消耗和较低的量。关键字:EU 2 O 3,ZnO,传感器,氢,电化学沉积
随着技术的进步和电子设备的小型化,无线传感器网络 (WSN) 的应用已遍布我们生活的各个领域。事实上,这些 WSN 已引起研究界和工业界的广泛关注,使其在市场上很容易买到。大量的研究、易用性和低廉的成本使它们在各种类型的未来应用中也很有用。鉴于当今的趋势,WSN 正日益成为未来通信技术的重要组成部分。例如,每当我们谈论物联网 (IoT)、智能城市或信息物理系统 (CPS) 时,我们都能在这些技术中找到 WSN 的作用。然而,随着这些多样化的应用和底层通信架构的出现,新的研究挑战也随之出现。本书是关于无线传感器网络的。主要目的是介绍基于 WSN 的不同类型的新兴通信技术。它还描述了如何将无线传感器网络与其他通信技术集成。尽管之前已经出版了几本关于 WSN 的书籍,但显然需要一本包含有关 WSN 及其在新兴通信技术中的应用的重要信息的书。此外,还应涵盖许多新技术,包括认知无线电传感器网络、无线纳米传感器网络和现代应用。事实上,WSN 的应用非常广泛,现在从无线体域网络到物联网中无线传感器网络的使用。最近,我们还看到了其他基于 WSN 的新兴应用,包括智能家居、智能城市和卫星通信。