具有贝叶斯优化的高级Narx神经网络可实现出色的海岸线预测准确性(RMSE:0.07-0.52M)。多个颞Landsat数据的集成(1987-2022)启用了158个横断面的精确海岸线描述,NRMSE为0.116595。模型5的多参数集成(波高,潮汐范围,位移)表现出卓越的性能,性能指数值范围为0.000149至0.000857。空间分析量化了21个不同沿海部门的临界侵蚀区(-7.0 m/年)和增生区(+24.48 m/年)。基于漏洞阈值的决策矩阵启用了目标保护策略(±20 m/年高,±5-20 m/年适度,±0-5 m/年低)。实施框架通过数据驱动的沿海保护和气候适应策略与可持续发展目标保持一致。
摘要准确的充电状态(SOC)估计取决于精确的电池模型。非线性和不稳定干扰因素的影响使准确的SOC估计变得困难。为了获得准确的电池模型,提出了基于NARX(具有外源输入的非线性自回归网络)的方法,提出了复发性神经网络和移动窗口方法。本文从以下三个方面提高了SOC估计的准确性,建模速度和鲁棒性。首先,为了克服对模型训练过程中数据量的过度依赖,使用NARX复发性神经网络来建立电池模型。narx(具有外部输入的非线性自回旋)具有延迟和反馈功能的复发性神经网络可以保留上一刻的输入和输出,并将其添加到下一个时刻的计算中。因此,使用少量数据实现了更好的估计结果;其次,移动窗口方法用于梯度爆炸和NARX模型训练过程中可能发生的梯度消失。第三,通过将其与不同的工作条件和不同温度下的其他方法进行比较,可以验证该模型的有效性。结果表明,所提出的模型具有更高的SOC估计准确性和速度。提出的模型的RMSE性能减少了约65%,并且执行时间缩短了约50%。
水温是水生生态系统的关键指标和天气。但是,绝大多数河流缺乏长期连续和完整的水温数据集。在这项研究中,通过将NARX(非线性自回旋网络与外源输入的非线性自回旋网络)和Air2Stream相结合的合奏模型用于重建每日的河水温度,以在欧洲最大的河流系统之一的奥德拉河盆地的27个水文站中为27个水文站重建。对于每个水文站,对NARX和AIR2Stream模型均经过校准和验证,并选择了表现良好的模型以重建1985年至2022年的每日河水温度。结果表明,通过组合Narx和Air2Stream结合使用杂种建模有望重建每日河水温度。根据重建的数据集,水温的年度和季节性趋势以及河流热浪的特征。结果表明,在过去40年中,年度水温显示出一致的变暖趋势,平均变暖率为0.315 c/十年。季节性河水温度表明,夏天的温暖速度更快,其次是秋季和春季,冬季河水温度显示出微不足道的变暖趋势。河河热波在奥德拉河盆地的频率,持续时间和强度增加,而27个水文站中有6个河流热浪被归类为“严重”和“极端”,这表明需要采取线索措施来减少气候变暖对水生系统的影响。2024中国地球科学大学(北京)和北京大学。此外,结果表明,空气温度是河流热浪的主要控制器,河流热浪往往会随着空气温度的变暖而增强。由Elsevier B.V.代表中国地球科学大学(北京)出版。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
摘要:手臂、手和指尖的活动功能和感觉信息的丧失妨碍了患者的日常生活活动 (ADL)。现代仿生假手可以弥补失去的功能并实现多自由度 (DoF) 运动。然而,由于传感器有限和缺乏稳定的分类算法,市售的假手通常具有有限的自由度。本研究旨在提出一种通过表面肌电图 (sEMG) 估计手指关节角度的控制器。用于训练的 sEMG 数据是使用商用 EMG 传感器 Myo 臂带收集的。提取时域中的两个特征并将其输入到具有外生输入的非线性自回归模型 (NARX) 中。使用 Levenberg-Marquardt 算法对 NARX 模型进行预选参数训练。与目标相比,模型输出的回归相关系数 (R) 在所有测试对象中均大于 0.982,信号范围为 [0, 255] 的任意单位时均方误差小于 10.02。研究还表明,所提出的模型可用于日常生活运动,具有良好的准确性和泛化能力。
摘要 - 恰好在具有最小碰撞的无构建环境中引导软机器人仍然是软机器人的开放挑战。当环境未知时,可能无法用于模拟和操作的导航的事先运动计划。本文提出了一种新颖的SIM到真实方法,可在模拟开放框架体系结构(SOFA)下的静态环境中指导电缆驱动的软机器人。SCE-NARIO的目的是在简化的横向气管插管过程中类似于其中一个步骤,在该过程中,机器人气管管由灵活的视频辅助内窥镜/stylet引导到上层气管larynx位置。在沙发中,我们采用二次编程逆求器来获得基于机器人模型的内窥镜/Stylet操纵的无碰撞运动策略,并编码与眼睛的视觉。然后,我们使用闭环非线性自动回收前模型(NARX)网络将虚拟视觉和关节空间运动识别的解剖学特征与关节空间相关联。之后,我们将学习的知识转移到机器人原型中,期望它仅根据其眼睛的视觉自动自动地在新的幻影环境中导航到所需的位置。实验结果表明,我们的软机器人可以根据从虚拟环境中学到的知识,在最小的碰撞运动中有效地通过非结构化的幻影训练到所需的位置。结果表明,闭环NARX预测和由SOFA引用的机器人电缆和棱镜关节空间运动之间的平均R平均系数为0.963和0.997。眼神的视线还表现出机器人尖端和震颤之间的良好对齐方式。
摘要 - 提出了通过闭环机器学习的低地球轨道(LEO)卫星轨道预测的框架。通过改进地面车辆的导航,与使用简化的一般扰动4(SGP4)Orbit Orbit Expagator相比,使用“非合作” LEO卫星信号来证明该框架的功效,并通过“非合作” LEO卫星信号导航。该框架称为LEO-NNPON(具有机会性导航的NN预测),假定以下三个阶段。(i)LEO卫星第一通过(跟踪):具有其位置提取物测量值的陆地接收器(伪造,载波相位和/或多普勒)从接收到的Leo卫星的信号中,使其能够估算到达的时间。LEO卫星的状态用SGP4传播的两行元素(TLE)数据初始化,随后在卫星可见性期间通过扩展的Kalman滤波器(EKF)估算。(ii)未观察的LEO卫星(预测):在估计的ephemerides上对具有外源输入(NARX)NN的非线性自回归进行了训练,并用于传播Leo卫星的轨道,以期在此期间不观察卫星。(iii)LEO卫星第二通道(导航):配备LEO接收器的地面导航器(例如,车辆),从Leo卫星的下链路信号中提取导航可观察到可观察到的可观察到的可观察到的可观察到的导航器。这些导航可观察物用于以紧密耦合的方式(例如,通过EKF)以紧密耦合的方式帮助导航器安装的惯性测量单元(IMU)。LEO卫星状态是从NN预测的胚层获得的。提出了装有工业级IMU导航4.05 km的地面车辆的实验结果,并提供了来自两个Orbcomm卫星的信号。比较了三个车辆导航框架,所有车辆导航框架都用全球导航卫星系统(GNSS) - 惯性导航系统(INS)位置和速度解决方案进行初始化。 (ii)使用SGP4传播的Leo Esphemerides的Leo-Aided Ins; (iii)与狮子座的狮子座。独立的三维(3-D)位置根平方(RMSE)为1,865 m,而SGP4的Leo Aided INS为175.5 m。 Leo-Nnpon的Leo Aided Ins为18.3 m,证明了拟议框架的功效。