自然光未校准光度立体 (NaUPS) 减轻了传统未校准光度立体 (UPS) 方法中严格的环境和光线假设。然而,由于内在的不适定性和高维模糊性,解决 NaUPS 仍然是一个悬而未决的问题。现有工作对环境光和物体材质施加了强有力的假设,限制了更一般场景中的有效性。或者,一些方法利用复杂模型的监督学习,但缺乏可解释性,导致估计有偏差。在这项工作中,我们提出了自旋光未校准光度立体 (Spin-UP),这是一种无监督方法,用于解决各种环境光和物体中的 NaUPS。所提出的方法使用一种新颖的设置,在可旋转的平台上捕获物体的图像,通过减少未知数来减轻 NaUPS 的不适定性,并提供可靠的先验来缓解 NaUPS 的模糊性。利用神经逆向渲染和所提出的训练策略,Spin-UP 可以以较低的计算成本恢复复杂自然光下的表面法线、环境光和各向同性反射率。实验表明,Spin-UP 优于其他监督/无监督 NaUPS 方法,并在合成和真实世界数据集上实现了最先进的性能。代码和数据可在 https://github.com/LMozart/CVPR2024-SpinUP 获得。
近年来,天然纤维增强复合材料由于其质量轻、耐磨、可燃、无毒、成本低和可生物降解等特性而受到广泛关注。在各种天然纤维中,亚麻、竹、剑麻、大麻、苎麻、黄麻和木纤维尤其受到关注。世界各地对利用天然纤维作为增强材料来制备各种类型复合材料进行了大量研究。然而,缺乏良好的界面黏附力、熔点低和耐湿性差使得天然纤维增强复合材料的使用不那么有吸引力。天然纤维的预处理可以清洁纤维表面、对表面进行化学改性、停止吸湿过程并增加表面粗糙度。在各种预处理技术中,接枝共聚和等离子处理是天然纤维表面改性的最佳方法。天然纤维与乙烯基单体的接枝共聚物可在基质和纤维之间提供更好的粘合性。本文回顾了预处理天然纤维在聚合物基质复合材料中的应用。还讨论了天然纤维表面改性对纤维和纤维增强聚合物复合材料性能的影响。POLYM. ENG. SCI.,49:1253–1272,2009 年。ª 2009 年塑料工程师协会
gov.uk(www.gov.uk)(www.gov.uk)(NPPF)需要很大的重量来保护和增强良好自然美容(已知为国家景观),国家公园以及在整个范围内的范围和规模范围内的景观和风景美感,并在各个领域中受到限制和规模的发展。第190段需要表现出特殊情况,以证明指定景观中的重大发展是合理的,并规定了在考虑相关发展建议时应应用的标准。《 2023年左旋与再生法》第245条(立法.gov.uk)赋予相关当局(包括地方规划机构)的义务,以寻求进一步的法定目的,在英格兰行使其职能方面的国家公园,广阔或杰出的自然美景领域。 这项职责还适用于指定区域以外的建议,但会影响其自然美景。《 2023年左旋与再生法》第245条(立法.gov.uk)赋予相关当局(包括地方规划机构)的义务,以寻求进一步的法定目的,在英格兰行使其职能方面的国家公园,广阔或杰出的自然美景领域。这项职责还适用于指定区域以外的建议,但会影响其自然美景。
gov.uk(www.gov.uk)(www.gov.uk)(NPPF)需要极大的重视来保护和增强良好自然美景(已知为国家景观),国家公园以及在整个范围和规模范围内的良好自然美景(已知称为国家景观)内的景观和风景优美。第183段需要表现出特殊情况,以证明指定景观中的重大发展是合理的,并规定了在考虑相关发展建议时应应用的标准。《 2023年左旋与再生法》第245条(立法.gov.uk)赋予相关当局(包括地方规划机构)的义务,以寻求进一步的法定目的,在英格兰行使其职能方面的国家公园,广阔或杰出的自然美景领域。 这项职责还适用于指定区域以外的建议,但会影响其自然美景。《 2023年左旋与再生法》第245条(立法.gov.uk)赋予相关当局(包括地方规划机构)的义务,以寻求进一步的法定目的,在英格兰行使其职能方面的国家公园,广阔或杰出的自然美景领域。这项职责还适用于指定区域以外的建议,但会影响其自然美景。
地球大气中包含中性大气成分,位于约90至600 km之间,称为中性热层,而该区域高于600 km左右的区域被称为Exosphere(图。4)。热层主要由中性气体颗粒组成,这些气体颗粒倾向于根据其分子量进行分层。AO是下层热层中的主要成分,氦气和氢主导了较高的区域。如图4所示,较低热层中的温度随着高度从90 km的最低增加而迅速增加。最终,它变得独立于高度,并接近称为外层温度的渐近温度。热层温度以及密度和组合,由于太阳极端紫外线(EUV)辐射的吸收加热,对太阳周期非常敏感。此过程已通过代理参数,即10.7 cm太阳能无线电通量(Flo.7)有效地建模。
1 因斯布鲁克大学药学/生药学研究所、因斯布鲁克分子生物科学中心 (CMBI),Innrain 80 / 82, 6020 因斯布鲁克,奥地利; F.Mayr@uibk.ac.at (FM); Veronika.Temml@pmu.ac.at (佛蒙特州); birgit.waltenberger@uibk.ac.at (BW); Stefan.Schwaiger@uibk.ac.at (SS); hermann.stuppner@uibk.ac.at (HS) 2 研究单位分子内分泌学和代谢,亥姆霍兹中心慕尼黑,Ingolstädter Landstraße 1, 85764 Neuherberg,德国; gabriele.moeller@helmholtz-muenchen.de(总经理); adamski@helmholtz-muenchen.de (JA) 3 格赖夫斯瓦尔德大学药学院制药/药物化学系,Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald,德国;ulrike.garscha@uni-greifswald.de (UG);jana.fischer@uni-greifswald.de (JF) 4 伯尔尼大学儿童医院儿科内分泌、糖尿病和代谢科,Freiburgstrasse 15, 3010 Bern,瑞士;patrirodcas@gmail.com (PRC); amit.pandey@dbmr.unibe.ch (AVP) 5 伯尔尼大学生物医学研究系,Freiburgstrasse 15, 3010 伯尔尼,瑞士 6 巴塞尔大学药学系分子与系统毒理学分部,Klingelbergstrasse 50, 4056 巴塞尔,瑞士;silvia.inderbinen@unibas.ch (SGI);alex.odermatt@unibas.ch (AO) 7 萨尔州亥姆霍兹药物研究所 (HIPS),药物设计和优化系,E8.1 校区,66123 萨尔布吕肯,德国; rolf.hartmann@helmholtz-hzi.de 8 萨尔大学,制药和药物化学,E8.1 校区,66123 萨尔布吕肯,德国 9 海德堡大学,药学和分子生物技术研究所 (IPMB),药物化学,Im Neuenheimer Feld 364,69120 海德堡,德国;christian.gege@web.de 10 埃德蒙马赫基金会 (FEM) 研究与创新中心,Via Mach 1,38010 San Michele all'Adige,意大利;stefan.martens@fmach.it 11 耶拿弗里德里希席勒大学药学研究所制药/药物化学系,Philosophenweg 14,07743 耶拿,德国; oliver.werz@uni-jena.de 12 遗传学实验学校,慕尼黑工业大学,Emil-Erlenmeyer-Forum 5, 85356 Freising-Weihenstephan, 德国 13 新加坡国立大学杨潞龄医学院生物化学系,8 Medical Drive, Singapore 117597,新加坡 14 药学研究所,萨尔茨堡帕拉塞尔苏斯医科大学制药和药物化学系,Strubergasse 21, 5020 Salzburg, Austria 15 药学/药物化学研究所,因斯布鲁克分子生物科学中心 (CMBI),因斯布鲁克大学,Innrain 80 / 82, 6020 Innsbruck, Austria * 通讯作者:daniela.schuster@pmu.ac.at;电话:+43-699-14420025
直到最近,研究人员主要对阅读中的人类行为数据感兴趣,以了解人类认知。然而,这些人类语言处理信号也可以用于基于机器学习的自然语言处理任务。目前,将脑电图大脑活动用于此目的的研究还很大程度上尚未得到探索。在本文中,我们首次进行了大规模研究,系统地分析了脑电图大脑活动数据在改进自然语言处理任务方面的潜力,特别关注了信号的哪些特征最有益。我们提出了一种多模态机器学习架构,它可以从文本输入和脑电图特征中联合学习。我们发现将脑电图信号过滤到频带中比使用宽带信号更有益。此外,对于一系列词嵌入类型,脑电图数据可以改进二元和三元情绪分类,并且优于多个基线。对于关系检测等更复杂的任务,在我们的实验中,只有情境化的 BERT 嵌入优于基线,这提出了进一步研究的需要。最后,当训练数据有限时,EEG 数据显示出特别有前景。
3参见,例如,夏威夷电气,综合电网计划报告,第260页(2023年5月),https://hawaiipowered.com/igpreport/igp-report_final.pdf(“必要时,我们在现有的基于化石燃料的机器人的最低载荷和循环装置中经营现有的化石燃料生成式车队,而不是他们设计的。随着未来几年内越来越多的可再生项目集成,生成的单位,尤其是蒸汽生成单元将处于越来越多的可变操作下。例如,运营50至75岁的O’Ahu车队,随着负载升起,负载较低和离线骑行的增加,加速了衰老过程,这导致并将继续导致强迫中断和/或每天的企业容量的增加。。。这些可靠性风险必须紧急解决 - 这是实现国家脱碳和可再生能源目标的基础。”)。
