本综述探讨了自然语言处理 (NLP) 和人工智能 (AI) 的集成,以增强实时分析的数据可视化。在数据呈指数增长的时代,传统的静态可视化越来越不能满足实时决策的需求。NLP 和 AI 提供了复杂的工具来动态解释和可视化数据,将大量原始信息转化为各个领域的可操作见解。本文综合了 NLP 和 AI 在数据可视化方面的当前研究、方法和应用,重点介绍了关键进展,例如增强的数据可解释性、实时数据处理能力以及通过自然语言查询和交互元素改善的用户交互。它还解决了实施这些技术所面临的挑战和局限性,包括计算复杂性、数据质量问题和道德考虑。本综述确定了重要的趋势和未来方向,例如增强现实和虚拟现实 (AR/VR) 的集成以及生成式 AI 模型的使用,这些趋势和方向有望进一步推动该领域的发展。通过全面概述数据可视化中 NLP 和 AI 的现状,本文旨在为未来的研究和开发工作提供参考和指导,以利用这些技术实现更有效、更高效的数据驱动决策。
gov.uk(www.gov.uk)(www.gov.uk)(NPPF)需要极大的重视来保护和增强良好自然美景(已知为国家景观),国家公园以及在整个范围和规模范围内的良好自然美景(已知称为国家景观)内的景观和风景优美。第183段需要表现出特殊情况,以证明指定景观中的重大发展是合理的,并规定了在考虑相关发展建议时应应用的标准。《 2023年左旋与再生法》第245条(立法.gov.uk)赋予相关当局(包括地方规划机构)的义务,以寻求进一步的法定目的,在英格兰行使其职能方面的国家公园,广阔或杰出的自然美景领域。 这项职责还适用于指定区域以外的建议,但会影响其自然美景。《 2023年左旋与再生法》第245条(立法.gov.uk)赋予相关当局(包括地方规划机构)的义务,以寻求进一步的法定目的,在英格兰行使其职能方面的国家公园,广阔或杰出的自然美景领域。这项职责还适用于指定区域以外的建议,但会影响其自然美景。
直到最近,研究人员主要对阅读中的人类行为数据感兴趣,以了解人类认知。然而,这些人类语言处理信号也可以用于基于机器学习的自然语言处理任务。目前,将脑电图大脑活动用于此目的的研究还很大程度上尚未得到探索。在本文中,我们首次进行了大规模研究,系统地分析了脑电图大脑活动数据在改进自然语言处理任务方面的潜力,特别关注了信号的哪些特征最有益。我们提出了一种多模态机器学习架构,它可以从文本输入和脑电图特征中联合学习。我们发现将脑电图信号过滤到频带中比使用宽带信号更有益。此外,对于一系列词嵌入类型,脑电图数据可以改进二元和三元情绪分类,并且优于多个基线。对于关系检测等更复杂的任务,在我们的实验中,只有情境化的 BERT 嵌入优于基线,这提出了进一步研究的需要。最后,当训练数据有限时,EEG 数据显示出特别有前景。
3参见,例如,夏威夷电气,综合电网计划报告,第260页(2023年5月),https://hawaiipowered.com/igpreport/igp-report_final.pdf(“必要时,我们在现有的基于化石燃料的机器人的最低载荷和循环装置中经营现有的化石燃料生成式车队,而不是他们设计的。随着未来几年内越来越多的可再生项目集成,生成的单位,尤其是蒸汽生成单元将处于越来越多的可变操作下。例如,运营50至75岁的O’Ahu车队,随着负载升起,负载较低和离线骑行的增加,加速了衰老过程,这导致并将继续导致强迫中断和/或每天的企业容量的增加。。。这些可靠性风险必须紧急解决 - 这是实现国家脱碳和可再生能源目标的基础。”)。
关于端粒区的结构,一个共同的主题正在出现。染色体末端带有多个串联重复的简单卫星状 DNA(2)。除了染色体末端的简单序列外,端粒附近的区域通常还带有长段中间重复 DNA(1、10、13、15、18、24)。在酿酒酵母中,染色体以 200 到 600 个碱基对的不规则序列 C1_3A 结束(17、23;图 1)。此外,在 DNA 末端附近发现了两个中间重复元素,称为 X 和 Y'(8、9)。Y' 是一个高度保守的元素,长度为 6.7 千碱基(kb)(8、9)。 X 是一种比 Y' 保守性更低的元件,大小范围为 0.3 至 3.75 kb,位于 Y' 的着丝粒附近(8, 9)。C1_3A 重复序列的内部序列以及 DNA 复制的推定起点(自主复制序列)与 X 和 Y' 相关(7, 21)。这些特性与端粒相关序列在复制、重组或端粒区域修复中发挥作用相一致。已经开发出凝胶系统,可以分离完整的酵母染色体 DNA 分子(4, 16)。已记录了菌株 YNN281、A364a、DCO4 和 AB972(5)中每条染色体在一个系统(正交场交替凝胶电泳 [OFAGE])中的行为。通过改良的凝胶插入法 (16) (5) 从这些菌株中制备 DNA,并进行 OFAGE 处理。将 DNA 转移到硝酸纤维素上并与 X 和 Y' 特异性探针杂交 (20)(图 2)。通过琼脂糖凝胶分离 1.7 kb NcoI 片段,从 YRp12O (9) 制备 X 特异性探针。通过分离 1.7 kb BglII 片段,从 YRpl31b (9) 制备 Y' 特异性探针,该片段被亚克隆到 BamHI 消化的 M13 mpl8 中。从 pYtl03 (17) 切下 125 碱基对 HaeIII-MnlI 片段,其中包含 82 碱基对 C1_3A 重复序列。杂交探针来自据报道不含 C1_3A 重复序列的 X 和 Y' 区域。这一点已通过以下事实得到证实:源自 pYtl03 的真正的 C1_3A DNA 既不与 X 也不与 Y' 探针杂交。为探针选择的 X 区域在不同的 X 元素中是保守的 (8, 9)。表 1 中显示的数据是从 17 种不同的凝胶中汇编而来的,这些凝胶的切换间隔范围为 20 到 80 秒。每个菌株的 X 和 Y' 分布模式不同(图 2 和 3)。每个菌株中至少有三条最小染色体中有一条不与 Y' 探针杂交,在三个菌株中,五条最小染色体中的两条不与 Y' 探针杂交
1. 根深蒂固的煤炭经济。印度传统上依赖煤炭,国内产能约为 200 吉瓦,2020 年的产能为 7.3 亿吨。最近的政策变化可能会增加这种依赖,包括允许私营公司开采和销售煤炭、拍卖 119 个煤矿区块,以及颁布修正案,使煤炭公司更容易获得土地。2. 天然气缺乏竞争力。国内天然气生产停滞不前,进口液化天然气价格昂贵。更昂贵的天然气成本无法收回,因为终端消费者的电价受到监管,阻止使用液化天然气的发电厂将相关成本转嫁给终端消费者。3. 没有峰值奖励。印度尚未制定可能使天然气受益的峰值电力政策。这导致超过 14 吉瓦的天然气产能搁浅。4. 印度不打算使用天然气逐步淘汰煤炭。尽管存在减少排放的机会,但印度的国内政策和第一个国家自主贡献 (NDC) 都没有提到使用天然气来实现这一目的。相反,印度电力部门脱碳战略目前取决于替代煤炭和可再生能源,天然气的作用很小。根据印度电力监管机构中央电力局 (CEA) 制定的 2020 年规划文件,印度打算到 2030 年建成 450 吉瓦的可再生能源。该计划建议依靠电池存储和抽水蓄能来管理波动性,尽量减少天然气的贡献。CEA 预计,到 2030 年
抽象的生物控制现在被公认为是一种环境,技术上适当的,经济上可行的害虫控制方法。The injudicious use of insecticides nowadays pose a threat to both the populations of target pests and beneficial insects.According to recent studies, IPM programs can be improved by establishing pesticide-resistant parasites that were chosen in the lab and then released into the field.The efficacy of natural enemies may be increased by a variety of characteristics, such as tolerance to pesticidal stress, tolerance to severe abiotic stressors,缩短发育率,后代产量的增加,性别比的变化以及宿主或栖息地偏好的变化。通过分子方法改善特征的“实验室生物”的开发可以提高其效率,从而提供保证的虫害控制率。因此,我们应该在分子生物学领域中利用新兴技术,以便在害虫管理过程中可以成功操纵“农民”朋友。关键词:生物控制,IPM,自然敌人,农药,害虫管理
近年来,天然纤维增强复合材料由于其质量轻、耐磨、可燃、无毒、成本低和可生物降解等特性而受到广泛关注。在各种天然纤维中,亚麻、竹、剑麻、大麻、苎麻、黄麻和木纤维尤其受到关注。世界各地对利用天然纤维作为增强材料来制备各种类型复合材料进行了大量研究。然而,缺乏良好的界面黏附力、熔点低和耐湿性差使得天然纤维增强复合材料的使用不那么有吸引力。天然纤维的预处理可以清洁纤维表面、对表面进行化学改性、停止吸湿过程并增加表面粗糙度。在各种预处理技术中,接枝共聚和等离子处理是天然纤维表面改性的最佳方法。天然纤维与乙烯基单体的接枝共聚物可在基质和纤维之间提供更好的粘合性。本文回顾了预处理天然纤维在聚合物基质复合材料中的应用。还讨论了天然纤维表面改性对纤维和纤维增强聚合物复合材料性能的影响。POLYM. ENG. SCI.,49:1253–1272,2009 年。ª 2009 年塑料工程师协会
地球大气中包含中性大气成分,位于约90至600 km之间,称为中性热层,而该区域高于600 km左右的区域被称为Exosphere(图。4)。热层主要由中性气体颗粒组成,这些气体颗粒倾向于根据其分子量进行分层。AO是下层热层中的主要成分,氦气和氢主导了较高的区域。如图4所示,较低热层中的温度随着高度从90 km的最低增加而迅速增加。最终,它变得独立于高度,并接近称为外层温度的渐近温度。热层温度以及密度和组合,由于太阳极端紫外线(EUV)辐射的吸收加热,对太阳周期非常敏感。此过程已通过代理参数,即10.7 cm太阳能无线电通量(Flo.7)有效地建模。