(2)由国家海洋和大气管理局(NOAA)出版的美国海岸飞行员是一系列十种航海书籍(卷),其中包含对美国沿海/沿海/沿海地区航海家和大湖水的各种信息。海岸飞行员旨在用作NOAA航海图表的补充。大部分内容无法以图形方式显示在图表上,并且在其他地方不易获得。涵盖的主题包括天气,气候,冰条,潮汐,水位,水流,突出的沿海特征和地标的环境因素。还提供了有关垂直间隙,码头描述,小型工艺设施,危险,疏and通道和深度的特定信息。还确定了导航服务和法规,包括试行,牵引,锚定,路线和交通分离计划,环境保护和其他联邦法律。
(25) (d) 根据该法案制定的有关历史资源的识别、评估、登记和处理的计划法规、政策、标准、指南和程序应在可行的范围内与《1966 年国家历史保护法》(54 U.S.C.)规定的保护和保存这些资源的国家政策相一致。300101 等、1974 年《考古和历史保护法》(54 U.S.C.)312501 等和 1979 年《考古资源保护法》(ARPA),16 U.S.C.470aa 等适用于陆地历史资源的同等程度的监管保护和保存规划政策应在可行的范围内扩展到指定国家海洋保护区边界内的海洋环境中的历史资源。根据本法授权的历史资源管理应
ME5350-2-99-260-鹰眼显示器(基本)ME5070-2-19-009-急流ense ex ia CH4传感器ME507070-2-99-151-7.2V电池组(W/RTC)PL118504-PL118504-充电器模块 ME5060-2-99-016 - Flameproof Display Enclosure ME5070-2-99-112 - Sensor Assembly ME5350-2-26-008 - Magnetic Pencil (triple magnet) ME5070-2-07-019 - Hybrid Calibration Cap ME5070-2-90-159 - Hybrid Snout ME5070-2-24-005 - Sintered filter for Hybrid Snout SW507001-软件升级2.0.2
重新规划电子航海图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... ................. ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 9
该项目旨在证明一个概念的技术可行性,该概念包括收集和准备数据集并基于机器学习算法应用计算机视觉系统,以检测和识别海洋船只,以监视航海旅游端口中的交通强度。这解决了观察到的问题,其中管理和控制决策仅基于涉及手动数据处理的常规技术,并需要使用大量的人类,财务和时间资源,并且容易出现错误。没有基于拟议概念的商业产品,该项目具有重大的技术风险。
提取物的复制(最多500个单词)是授权的,除非出于商业目的,只要保留了文本的完整性,摘录就不会出于上下文,不会提供不完整的信息,或者不会以其他方式误导读者,因为读者
2023 年 1 月 1 日,Wiebe Nauta 被任命为北约通信和信息局 (NCI Agency) 首席运营官。在担任该职位期间,他负责协调需求和供应以创造客户价值。他的职责范围包括领导业务规划和生命周期业务开发、监督项目和服务的资源分配、指导数据驱动的绩效改进以及确保遵守机构流程和框架。Nauta 是促进有效和高效业务运营的协作环境的关键机构高管层权威。
无人驾驶飞行器 (UAV) 越来越受欢迎,这得益于其在民用、教育、政府和军事领域的应用。然而,有限的机载能量存储严重限制了飞行时间并最终影响可用性。推进系统在 UAV 的总能耗中起着至关重要的作用;因此,有必要针对给定的任务概况确定推进系统组件(即螺旋桨、电动机和电子速度控制器 (ESC))的最佳组合。不同组件有数百种选择,但大多数组件几乎没有性能规格。通过研究各种现有的长航时飞机,Aero-Naut CAM 碳纤维折叠螺旋桨被确定为最常用的商用现货螺旋桨类型。然而,公开文献中没有关于 Aero-Naut CAM 碳纤维折叠螺旋桨的性能数据。本文介绍了 40 个 Aero-Naut CAM 碳纤维螺旋桨的性能测试,这些螺旋桨为 2 叶片配置,直径为 9 到 16 英寸,螺距值各不相同。螺旋桨的测试转速为 3,000 到 7,000 RPM,前进流为 8 到 80 ft/s,具体取决于螺旋桨和测试设备的限制。本文介绍了在静态和前进流条件下测试的 40 个螺旋桨的结果,并讨论了几个关键的观察结果。生成的数据将在 UIUC 上提供下载
摘要。在亚利桑那大学设计和开发了两个破坏性的太空望远镜概念;这些是20米的绿洲(用于研究恒星系统的旋转天文卫星)和8.5米的Nautilus。Oasis结合了突破性充气孔径和自适应光学技术,以实现20多米级的Spaceborne Terahertz/Far-Infrared望远镜的梦想。在Nautilus可见/近红外望远镜概念中,传统的主要镜子被一个〜8.5米的模式(多阶衍射工程)镜头取代,较低的面积密度较低10倍,而在传统系统中,较低的错误敏感性较低100倍,从而使大型型号的敏感性降低了,从而实现了较大的较大的单历光学空间望远镜。与当前的最新状态相比,绿洲和鹦鹉螺概念有可能大大降低任务成本和风险。
随着全球定位系统 (GPS) 的出现,航海者现在可以比以前更加精确地导航。本讨论重点关注航海图在绘制 GPS 接收器位置时的固有局限性。对于海图制作者来说,海图的准确性必须考虑到航海员视力敏锐度、所用的平版印刷工艺和绘图技术以及特征符号化(例如线宽)的局限性。GPS 用户在使用与 GPS 不同的基准在海图上绘制 GPS 得出的位置时,必须确保进行纬度/经度偏移。所有新的 NGA 海图均基于 WGS 基准编制,该基准与 GPS 接收器在默认基准设置中使用的基准相同,但通常可以选择其他基准。在实施 GPS 之前得出的位置是使用各种光学仪器确定的,这些仪器专注于导航辅助设备、海岸特征或天体。由于了解这些方法的局限性,海员们对海图上描绘的危险物避而远之,包括助航设备、浅滩和障碍物。海图制作者用来定位危险物的可用导航信息和制图过程比海图用户可用的导航手段更准确。现在情况发生了逆转;使用 GPS,海员现在可以获得比用于编制海图的数据更准确的位置定位。由于 GPS 提供了这样的精度,海员现在需要