本研讨会旨在将开拓者和从业人员汇集到研究问题上的研究问题,以讨论其新的范式并寻找路线图,从而促进对新兴研究问题的理解,从而引起广泛的兴趣并以方向向前发展交流见解。我们努力在这个基本主题背后建立一个社区,并提供平台,共享想法,探索共识并创造协作机会。值得一提的是,基础模型的当前数据实践在很大程度上是不透明的1。本研讨会的一个使命是在预处理阶段本身就开源数据工作进行社区努力。随后的努力包括创建数据集,基准(例如MLCommons和Dataperf)以及专门的场所(例如DMLR)来促进基础模型数据问题的研究,并最终促进FMS在社交技术方面的广泛部署,从而为大体而提供受益的型社会技术。
最近在操纵和运动领域取得了显着进展,但移动操作仍然是一个长期以来的挑战。与运动或静态操纵相比,移动系统必须在非结构化和动态环境中可行的多种长距离任务。尽管应用程序广泛且有趣,但在开发这些系统(例如基础和手臂之间的协调)时,有很多挑战,依靠在船上感知到感知和与环境互动,最重要的是,同时整合了所有这些部分。先前的作品使用模块化技能来解决问题,以使其动机和操纵被微不足道地捆绑在一起。这引起了多个限制
摘要1摘要(葡萄牙)2认可3目录5图7缩写8术语9 1.简介10 1.1。背景10 1.2。问题语句12 1.3。研究目的14 1.4。研究问题15 1.5。划界15 1.6。论文的轮廓16 2。理论框架17 2.1。人工智能技术及其在军事决策过程中的应用17 2.1.1。人工智能的定义17 2.1.1.1。弱AI和强AI 18 2.1.2。AI集成的水平20 2.1.2.1。 人类内部和自治AI 20 2.1.2.2。 Black-Box AI和可解释的AI 20 2.1.3。 军事决策过程22 2.1.4。 军事决策过程中AI技术整合的当代范式23 2.2。 对AI 25 2.2.1的感知,假设,期望和信任。 技术接受模型:扩展到AI 25 2.2.2。 技术帧27 2.2.3。 对AI的信任及其对MCDMP 28 28 2.2.3.1集成的影响。 信任的定义29 2.2.3.2。 信任AI:信任的维度30 2.2.3.3。 信任AI:技术的可信度30 2.3。 结论31 3。 方法论33 3.1。 研究方法:定性研究33 3.1.1。 时间范围34 3.2。 研究设计:选择和选择34 3.3。 数据收集方法35AI集成的水平20 2.1.2.1。人类内部和自治AI 20 2.1.2.2。Black-Box AI和可解释的AI 20 2.1.3。军事决策过程22 2.1.4。军事决策过程中AI技术整合的当代范式23 2.2。对AI 25 2.2.1的感知,假设,期望和信任。技术接受模型:扩展到AI 25 2.2.2。技术帧27 2.2.3。对AI的信任及其对MCDMP 28 28 2.2.3.1集成的影响。信任的定义29 2.2.3.2。信任AI:信任的维度30 2.2.3.3。信任AI:技术的可信度30 2.3。结论31 3。方法论33 3.1。研究方法:定性研究33 3.1.1。时间范围34 3.2。研究设计:选择和选择34 3.3。数据收集方法35
“系统、决策和控制研究”系列(SSDC)涵盖了广泛认知的系统、决策和控制各个领域的新发展和进步以及最新技术水平——快速、最新且高质量。旨在涵盖与系统、决策、控制、复杂过程和相关领域相关的最新技术和未来发展的理论、应用和观点,这些领域涉及工程、计算机科学、物理学、经济学、社会和生命科学,以及它们背后的范式和方法。本系列包含系统、决策和控制方面的专著、教科书、讲义和编辑卷,涉及网络物理系统、自主系统、传感器网络、控制系统、能源系统、汽车系统、生物系统、车辆网络和联网汽车、航空航天系统、自动化、制造、智能电网、非线性系统、电力系统、机器人、社会系统、经济系统等领域。对于投稿者和读者来说,特别有价值的是较短的出版周期以及全球范围的分发和曝光,这使得研究成果能够广泛而迅速地传播。
我的 AI 架构看起来会是什么样子?...........................................................................................................
2024 年 4 月由 FSMB 众议院通过 执行摘要 人工智能 (AI) 具有巨大潜力,可帮助医疗保健提供者进行诊断、治疗选择、临床记录和其他任务,以提高质量、可及性和效率。但是,如果没有适当的“护栏”和理解,这些技术就会带来风险,这可能会影响临床实践中的考虑因素以及州医疗委员会的监管流程。通过采取以道德原则为基础的主动和标准化治理方法,州医疗委员会可以促进各种形式的人工智能的安全有效整合,同时优先考虑患者的健康。本报告总结了专家意见和程序,以制定 FSMB 道德和专业委员会的指导方针,以帮助医生和州医疗委员会引导负责任和合乎道德的人工智能融入,重点是 (1) 教育、(2) 强调人类责任、(3) 确保知情同意和数据隐私、(4) 主动解决责任和义务问题、(5) 与专家合作以及 (6) 将人工智能治理锚定在道德原则上。必须持续监控和改进使用人工智能的临床系统和流程。这不应在真空中进行,而应成为医生、卫生系统、数据科学家和监管机构(包括州医疗委员会)之间协作的重点。通过深思熟虑地应对人工智能在医疗保健领域带来的机遇和挑战,州医疗委员会可以促进人工智能的安全、有效和合乎道德的使用,将其作为一种工具来增强(但通常不会取代)医疗实践中人类的判断力和责任感。在履行其使命以确保患者从人工智能的应用中受益而不是受到伤害的过程中,州医疗委员会必须避免过度监管和监管过度,避免试图监管不属于其职权范围的领域。通过集中精力关注持照人使用人工智能的现状和未来,州医疗委员会可以保持监管效率,实现跨辖区在临床实践中对人工智能监管的一致性,帮助确保人工智能的益处,并在维护专业标准的同时积极保护患者。
来源:Rare:英国 16 岁以上的咨询成年人(N=3,519)数据收集于 2022 年 9 月 16 日至 11 月 1 日。问题 17 - 您是否考虑在未来 12 个月内进行以下任何医学美容治疗?正在考虑任何医学美容治疗的人(N=710)。