已有39年了,迈克一直专注于赢得通信计划的设计,人员配备和策略。作为Tigercomm的创始人兼总裁,他曾在170个客户组织中为清洁技术高管,投资者和慈善家提供了沟通策略,以实现其业务目标。Mike是美国顶级创新者和清洁技术营销,公关,社区接受和公共事务的策略师。他参加了十几个主要会议,他已经培训了2200多人的面试技术,消息发展和公共关系计划管理。Mike经常在LinkedIn,补给和清洁技术上写信。他还共同主持可再生能源世界的每周最受欢迎的新闻综述节目“本周清洁技术”以及缩放清洁播客。
BIRAC与农村发展和农业生产部(RDAP)合作的Nehu Tura校园的Biotest Biocumuumuumuubator(B3I)设施(RDAP)与16个农村企业家进行了动手培训计划。他们还组织了两天的网络研讨会“发酵:微生物,免疫和健康的相互作用”。计算机应用系还与Tezpur University DST-TEC中心的Nayan Moni Kakoty协调员Nayan Moni Kakoty教授组织了特别演讲。此外,英语nehu教职员工助理教授Namrata Pathak博士被选为享有声望的Charles Wallace奖学金。博士Crystal Cornelious D. Marak被提名为新德里Sahitya Akademi总理事会的国家。与此同时,我再次祝贺整个E-Magazine委员会的真诚努力,记录了Nehu Tura校园的成就。
本报告由世界银行尼泊尔宏观经济、贸易与投资 (MTI) 团队编写,该团队由 Florian Blum (高级经济学家,MTI)、Alice J Brooks (高级经济学家,MTI) 和 Nayan Krishna Joshi (经济学家,MTI) 组成。报告的第一部分由 Florian Blum (高级经济学家,MTI)、Alice J Brooks (高级经济学家,MTI) 和 Nayan Krishna Joshi (经济学家,MTI) 编写。特别关注部分由 Alice J Brooks (高级经济学家,MTI)、Thi Thanh Bui (经济学家,EMFMD) 和 Biying Zhu (长期顾问,MTI) 编写。MFMod-CC 模型的校准和估计由 Thanh Bui 负责。 Nethra Palaniswamy(POV 高级经济学家)和 Prashant Raj Pandey(ESAF1 经济学家)提供了意见。水电投资计划由 Rabin Shrestha(ISAE1 高级能源专家)和 Fanny Missfeldt-Ringius(ISAE1 首席能源专家)制定。报告受益于 Prakash Kumar Shrestha 博士(尼泊尔中央银行执行董事)的咨询。团队感谢 Mathew Vergis(南亚地区公平增长、金融和机构 (EFI) 主任)、Faris Hadad-Zervos(马尔代夫、尼泊尔和斯里兰卡国家主任)、Lada Strelkova(运营经理)、Shabih Ali Mohib(MTI 实践经理)和 Tae Hyun Lee(EFI 首席国家经济学家)对报告的指导和评论。 Andrew Burns(EMFMD 首席经济学家)就特别关注部分的内容提供了有益的建议
微电子与纳米技术 Shamsuddin 研究中心 (MiNT-SRC) 是马来西亚敦胡先翁大学 (UTHM) 综合工程学院 (IIE) 下属的五个卓越中心 (CoE) 之一。该研究中心成立于 2006 年 11 月 27 日,前身为微电子与纳米技术中心 (MiNTEC),2007 年 11 月 25 日升级为研究卓越中心。MiNT-SRC 以 UTHM 董事会主席 Y.Bhg. Tan Sri Dato' Seri Ir Shamsuddin bin Abdul Kadir 的名字命名,以纪念他对 UTHM (2007-2009) 的贡献。MiNT-SRC 的目标是成为马来西亚南部微电子和纳米技术领域的领先研究中心。该研究中心由副教授 Marlia Morsin 博士领导,她从事基于纳米材料的传感器、真菌治疗和媒介控制领域的研究。此外,还有6名来自不同领域的首席研究人员,分别是Nafarizal Nayan教授(纳米等离子体处理和诊断)、Mohd Khairul Ahmad教授(纳米结构材料)、Soon Chin Fhong副教授(生物纳米技术、生物工程和物联网)、Fariza Mohamad副教授(使用电沉积的同质和异质结薄膜)、Farhanahani Mahmud副教授(医疗电子、嵌入式系统和人工智能)和Nur Hanis Hayati Hairom副教授(纳米技术、膜技术和废水处理)。这七位核心研究人员构成了MiNT-SRC研究进步的骨干。
使用 SF 6 和 CHF 3 气体的工艺 Muhammad Hidayat Mohd Noor 1 , Nafarizal Nayan 1,2 * 1 电气和电子工程学院 (FKEE), Universiti Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, MALAYSIA 2 微电子和纳米技术 - Shamsuddin 研究中心 (MiNT-SRC), Universiti Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, MALAYSIA *通讯作者指定 DOI:https://doi.org/10.30880/eeee.2022.03.02.010 2022 年 6 月 27 日收稿; 2022 年 7 月 24 日接受; 2022 年 10 月 31 日在线提供摘要:反应离子刻蚀 (RIE) 是一种用于微加工的刻蚀技术,也是干法刻蚀的方法之一,与湿法刻蚀相比具有不同的特性。RIE 中的反应等离子体的化学过程用于去除晶圆上沉积的材料。RIE 蚀刻机有几个可变因素,例如射频功率、压力、气体流速和蚀刻时间,这些因素对应于其蚀刻深度和蚀刻速率的输出参数。需要进行大量实验才能找到 RIE 的最佳设置,从而为输出蚀刻速率建立理想的条件。在本研究中,使用供给 RIE 系统的 SF 6 和 CHF 3 工艺气体对 Si 和 SiO 2 晶圆进行蚀刻。使用 Dektak XT Bruker 表面轮廓仪研究了蚀刻深度和蚀刻速率,并使用 3D 映射模式表征了蚀刻后的 Si 和 SiO 2 的表面粗糙度。结果显示了不同射频功率、时间和流速对蚀刻深度和速率的影响,从而可以选择最佳参数。关键词:反应离子蚀刻、RIE、等离子蚀刻、硅、二氧化硅