过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
摘要:高熵合金 (HEA) 由 5–35 at% 的五种或更多种元素组成,具有高配置熵,不形成金属间化合物,具有单相面心立方结构或体心立方结构。特别是,耐火高熵合金 (RHEA) 基于在高温下具有优异机械性能的耐火材料,在室温下具有高强度和硬度,在低温和高温下具有优异的机械性能。在本研究中,使用直接能量沉积 (DED) 沉积了 Ti-Nb-Cr-V-Ni-Al RHEA。在 Ti-Nb-Cr-V-Ni-Al 的微观结构中,σ、BCC A2 和 Ti2Ni 相似乎与相图中预测的 BCC A2、BCC B2 和 Laves 相不同。该微观结构类似于铸造的 Ti-Nb-Cr-V-Ni-Al 的微观结构,并具有构造的细晶粒尺寸。发现这些微观组织的生长是由于 DED 工艺,该工艺具有快速凝固速度。细小的晶粒尺寸导致高硬度,测量的 Ti-Nb-Cr-V-Ni-Al 显微硬度约为 900 HV。此外,为了分析由耐火材料组成的 Ti-Nb-Cr-V-Ni-Al 的热性能,通过预热试验分析了热影响区 (HAZ)。由于 Ti-Nb-Cr-V-Ni-Al 的热扩散率高,HAZ 减小了。
自 2011 年首次合成 MXene 以来,MXene 的安全且可扩展的生产一直是一个重要但难以实现的目标 1 。MXene 是二维纳米材料,通式为 M n+1 X n T z ,其中 M 是早期过渡金属(通常是 Ti、Nb 或 V),X 是碳和/或氮,T z 代表表面终止(例如 -F、-Cl、-OH、-O)。MXene 源自一种称为 MAX 相的母材料,该母材料将 M-X 与来自周期表 13-16 2,3 族的层间 (A) 元素结合在一起。已经合成了 50 多个 MAX 相;但是,只有一些 MAX 相可以通过传统的酸蚀技术剥离成感兴趣的二维 MXene 纳米片。之前的研究大多集中在 Ti 基 MXenes 上。MXene 纳米片可用于储能、催化、EMI 屏蔽、传感器和复合材料 4-10 等一系列应用。高浓度氢氟酸 (HF) 通常用于从 MAX 相中选择性去除 A 层以生产 MXenes。其他方法通常使用盐形成原位 HF 溶液,例如将氟化锂 (LiF) 和盐酸 (HCl) 结合或使用氟化氢铵 (NH 4 )HF 2 1,11 。然而,使用水性氟化物蚀刻剂具有许多固有的风险和挑战。与处理 HF 相关的危害使得 MXene 合成工艺难以扩大到商业水平。酸蚀 MXene 合成路线的另一个缺点是废物管理 12 。此外,传统的 HF 酸蚀技术仅限于少数 MAX 相,因此需要
纳米多孔锡2 O 7(nptno)材料通过用离子液体(IL)作为指导温度的纳米多孔结构合成的溶胶 - 凝胶方法。nptno即使以50°C的充电速率,在5 c时为1000个周期和lini 0.5 mn 1.5 o 4-耦合的全细胞容量重新构成的全细胞能力接力为81%和87%的87%和87%cass in 1000 cycles at 1 c cycles at 1 c cycles at 1 c cycles nptno的高可逆能力为210 mAh g –1。 对1000个循环的NPTNO电极的研究表明,IL指导的介孔结构可以增强NPTNO细胞的可环性,这是由于缓解了重复的机械应力和由重复的LI +插入 - 插入 - 攻击过程引起的重复性机械应力和体积波动。 测得的LI +扩散系数从Galvanostatic间歇性滴定技术中表明,IL-启动策略确实确保了基于快速LI +扩散动力学的NPTNO细胞的快速再核能。 受益于纳米多孔结构,具有未阻碍的Li +扩散途径的NPTNO在基于钛基的氧化物材料中实现了Supe-rior速率能力,并且在TNO材料中具有最佳的全细胞环环性。 因此,证明了IL的模板潜力,并且出色的电化学性能确立了IL定向的NPTNO作为可快速回流LIB的有前途的阳极候选者。nptno的高可逆能力为210 mAh g –1。对1000个循环的NPTNO电极的研究表明,IL指导的介孔结构可以增强NPTNO细胞的可环性,这是由于缓解了重复的机械应力和由重复的LI +插入 - 插入 - 攻击过程引起的重复性机械应力和体积波动。测得的LI +扩散系数从Galvanostatic间歇性滴定技术中表明,IL-启动策略确实确保了基于快速LI +扩散动力学的NPTNO细胞的快速再核能。受益于纳米多孔结构,具有未阻碍的Li +扩散途径的NPTNO在基于钛基的氧化物材料中实现了Supe-rior速率能力,并且在TNO材料中具有最佳的全细胞环环性。因此,证明了IL的模板潜力,并且出色的电化学性能确立了IL定向的NPTNO作为可快速回流LIB的有前途的阳极候选者。
摘要—大带宽体声波 (BAW) 滤波器是第五代 (5G) 通信系统的迫切需求。在这项研究中,我们在多层氧化物薄膜上制备了 43 ◦ Y 切割铌酸锂 (LN) 单晶薄膜,并成功实现了带氧化物布拉格反射器 (BR) 的体声波滤波器。介绍了滤波器的设计方法和制造工艺。利用原子力显微镜 (AFM) 和扫描电子显微镜 (SEM) 来表征薄膜的质量。结果证明了将单晶薄膜转移到多层氧化物上的可行性,这对于限制声能是有效的。该谐振器的有效机电耦合系数为 14.6%,品质因数 (FOM) 为 32.94。该滤波器尺寸紧凑,为600 μ m×400 μ m,在中心频率为3.128 GHz时相对带宽为10.3%,有望应用于5G系统。
从技术上优化金属注射成型钛合金 (Ti-MIM) 的加工清洁度在经济上不可行。这个问题在材料加工领域很常见。在寻找替代方法的过程中,这项工作试图在耐受非常高的杂质水平的同时实现卓越的高周疲劳 (HCF) 性能。该概念源于 b 类 Ti 合金对氧溶质的较大耐受性以及在单调载荷下减轻碳化物夹杂物的有害影响的可行性。在本文中,用于疲劳关键应用的 MIM b Ti-Nb-Zr 生物材料是特意以非常高的 O 水平和正常/非常高的 C 水平生产的。无论加工清洁度如何,抗杂质的 Ti 生物材料都表现出超过 600 MPa 的优异 HCF 耐久极限,明显高于在严格限制杂质水平的情况下生产的 a - b Ti 参考合金。这种优异的疲劳性能,同时耐受一定量的杂质,源于对杂质不敏感的“弱”微观结构特征和 Ti 基质对疲劳小裂纹的增强抵抗力。此外,在某些情况下,可能出现由两种相互竞争的裂纹起始机制引发的条件疲劳二元性,起始于微尺度孔隙 a - 片状体和大孔隙 TiC 夹杂物。本合金工艺开发的成功可能会大大放宽对活性金属的加工要求。� 2021
朝着工业和学术的角度实现强大的潜在应用。表面上操纵缓冲液和有机溶剂对于许多生物,医学和/或化学操作都是基础。[1-9]用于迅速现场诊断和治疗,临床诊断,基于细胞的应用以及检测或感测的护理点应用是使用情况的例子。[10]大量精力集中在微型化和自动化上,也可以将它们视为远程医疗应用的可能路线,提高效率并减少所涉及的材料总量。例如,在进行诊断测试的情况下,涉及微流体芯片涉及的生物材料和化学试剂的减少可以对比化学成本,增加总加工测试的数量,加快时间的加快时间,并且在自动化的情况下,还可以降低交叉污染和维持的风险。基于智能表面的不同解决方案已被提出,用于控制液滴运动并开放两相油 - 水分离,生物技术,自我清洁和抗质应用,只是为了引用很少的。[11-14]在平面表面上,可以使用多种开发的方法来控制液滴的运动,例如表面声波,磁对照表面,热毛细血管,介电粒细胞感和电trowetting-n-eilectric芯片。[25,26][15–21]在后一种情况下,电极的像素尺寸限制了可以操纵的最小液滴尺寸,以克服该问题,已经提出了轻图案的电解图,以在开放的,毫无曲线的,特征和光导能的表面上进行液滴操纵。[22]创建液体操作表面梯度的替代方法包括对外部刺激的响应改变表面电荷密度和质地的改变(例如,磁/电场)以及表面富集,具有化学功能基团的表面群体,以动态地控制表面的性能,[23,24]越来越需要创建平坦的模式,或者在平坦的范围内屈曲,或者是柔韧性的,或者是柔韧性的。
铌硅钢 70.63 22.58 1.51 0.17 6.90 γ-铌硅钢 32.99 25.64 34.36 6.65 1.02 α-铌硅钢 47.92 13.66 35.22 2.95 0.24