美国国家航空航天局 (NASA) 的工程学作为一门学科经历了快速而持续的发展。变化包括使用基于模型的系统工程来改进产品的开发和交付,以及适应 NASA 程序要求 (NPR) 7123.1 的更新。系统工程的经验教训记录在 NASA 综合行动小组 (NIAT)、哥伦比亚事故调查委员会 (CAIB) 和后续的 Diaz 报告等报告中。其他经验教训来自机器人任务,例如 Genesis 和火星勘测轨道器,以及地面操作和商业航天行业的事故。NASA 总工程师办公室 (OCE) 的倡议就是在这些报告中提出的,旨在改善整个机构的系统工程基础设施和能力,以便高效和有效地设计 NASA 系统,生产优质产品,并实现任务成功。本手册更新是 OCE 赞助的机构范围的系统工程计划的一部分。
该俱乐部是 Flying Start Challenge 的支持者之一,该比赛由西南地区的企业和组织为当地学校举办,旨在帮助培养科学和工程技能,并突出工程职业的机会。要了解更多信息,请访问 www.flyingstartchallenge.co.uk。挑战赛的最后阶段于今年 3 月 18 日在 Yeovilton 的 RNAS 博物馆举行。为了激发兴趣,David Zarb 同意带上他的 Ventus 2cxt“Charlie Zulu”,并将其作为静态展示品在博物馆外进行安装。Jeremy Mitcheson 和 Bob Page 与 David 一起安装/拆卸滑翔机,并与(大多数)非常感兴趣的学生和他们的老师进行交流。CZ 看起来非常时尚,旁边还有一架 Sea King 和一架 Lynx 直升机,也在静态展示中。挑战之一是让每所学校设计和建造一架模型滑翔机,花费不到 15 英镑。每架滑翔机都要进行两次室内飞行,获胜者就是
摘要 杂种优势对于提高作物的产量和质量至关重要。人们已经对开发杂种优势的杂交品种进行了深入研究,并证明其是稳健有效的。细胞质雄性不育 (CMS) 在杂交生产中得到了广泛的研究。CMS 的潜在机制包括细胞毒蛋白的作用、绒毡层细胞的 PCD 和恢复因子的不当 RNA 编辑。另一方面,育性的恢复是由育性恢复 (Rf) 基因或恢复基因的存在引起的,这些基因会抑制导致不育的基因的作用。线粒体和核基因组之间的相互作用对几种调控途径至关重要,正如在 CMS-Rf 系统中观察到的那样,并且发生在基因组、转录、转录后、翻译和翻译后水平。这些 CMS-Rf 机制已在多种作物系统中得到验证。本综述旨在总结CMS–Rf系统的核线粒体相互作用机制,并阐明利用基因工程和基因组编辑等生物技术干预手段实现基于CMS的杂交种。
美国国家航空航天局 (NASA) 的工程学作为一门学科经历了快速而持续的发展。变化包括使用基于模型的系统工程来改进产品的开发和交付,以及适应 NASA 程序要求 (NPR) 7123.1 的更新。系统工程的经验教训记录在 NASA 综合行动小组 (NIAT)、哥伦比亚事故调查委员会 (CAIB) 和后续的 Diaz 报告等报告中。其他经验教训来自机器人任务,例如 Genesis 和火星勘测轨道器,以及地面操作和商业航天行业的事故。NASA 总工程师办公室 (OCE) 的倡议就是在这些报告中提出的,旨在改善整个机构的系统工程基础设施和能力,以便高效和有效地设计 NASA 系统,生产优质产品,并实现任务成功。本手册更新是 OCE 赞助的机构范围的系统工程计划的一部分。
热塑性树脂,有时称为工程塑料,包括一些聚酯、聚醚酰亚胺、聚酰胺酰亚胺、聚苯硫醚、聚醚醚酮 (PEEK) 和液晶聚合物。它们由长而离散的分子组成,在加工温度下熔化为粘稠液体,通常为 500” 至 700” F (260° 至 3710 C),成型后冷却为无定形、半结晶或结晶固体。结晶度对最终基质性能有很大影响。与热固性树脂的固化过程不同,热塑性塑料的加工是可逆的,并且只需重新加热到加工温度,树脂就可以根据需要形成另一种形状。热塑性塑料虽然在高温强度和化学稳定性方面通常不如热熔胶,但更耐开裂和冲击损伤。然而,值得注意的是,最近开发的高性能热塑性塑料,如具有半结晶微结构的 PEEK,表现出优异的高温强度和耐溶剂性。
本丛书旨在介绍关键基础设施系统和信息物理系统的风险、安全性和可靠性的最新研究、研究和最佳工程实践、实际应用和实际案例研究。本丛书将涵盖网络关键基础设施的风险、故障和漏洞的建模、分析、框架、数字孪生模拟,并提供 ICT 方法以确保保护和避免破坏经济、公用事业供应网络、电信、运输等重要领域。在公民的日常生活中。将分析关键基础设施的网络和现实性质的交织,并揭示关键基础设施系统的风险、安全性和可靠性挑战。通过整个云到物连续体技术的感知和处理提供的计算智能将成为实时检测网络关键基础设施中的风险、威胁、异常等的基础。并将促使采取人为和自动保护行动。最后,将寻求对政策制定者、管理者、地方和政府管理部门以及全球国际组织的研究和建议。
bio:Maribel Acosta自2023年8月以来是Tum Campus Heilbronn的数据工程教授。Maribel Acosta在Vene-Zuela的Simon Bolivar大学学习了计算机科学。从2012年到2017年,她是Karlsruhe Technol-Ogy(Kit)的研究助理,在那里她获得了博士学位。然后,她在Kit担任博士后和副教授,直到2020年。之后,她被任命为Ruhr-University Bochum的数据库和信息系统教授,直到2023年7月。她积极参与了有关数据工程和人工智能的科学社区。她的工作获得了几个“最佳纸张奖”,她担任著名会议的主席和审稿人。除了研究外,Maribel Acosta在数据基础,大数据和知识图中还拥有多年的教学经验,并获得了两个“最佳教学奖”。
MDE 学生作为工程项目团队的一员贡献他们的知识和技能,他们专注于通过完整的设计周期来设计解决方案,其中团队合作、沟通、规划和测试都是取得您在展示中看到的成功的必要条件。这些团队在线上进行,许多团队在项目设计的前半部分身处偏远地区。当地学生可以进入设计工作室,但所有学生都通过向团队成员运送零件和设备来获得支持。规划必须考虑位置和运输时间以及工程方面的考虑。他们项目建设的后半部分是在校园内亲自进行的,但仍然受到 COVID 协议和全球物流挑战的影响。有些人的交付远远超出了我们认为在这种情况下不可能完成的任务,有些人将讨论剩下的工作。这些学生代表了我们的下一代工程师,他们已准备好应对和克服社会新出现的全球挑战。
Zhanna L. Malekos Smith 法学博士是联合国裁军研究所的非常驻研究员,也是联合国训练研究所 (UNITAR) 的国际法教授。此外,她还是华盛顿特区战略与国际研究中心 (CSIS) 航空航天安全项目和战略技术计划的高级研究员、卡内基国际事务伦理委员会的访问学者以及西点军校陆军网络研究所的研究员。此前,Malekos Smith 曾担任西点军校系统工程系助理教授和美国航空战争学院的网络战研究教授。她曾担任美国空军军法署前上尉和律师,并在麻省理工学院的预备役军官训练团 (ROTC) 项目中获得委任。本文表达的观点仅代表作者本人,不代表联合国、美国政府或美国国防部。