1美国北卡罗来纳大学教堂山的遗传学系; 2美国北卡罗来纳大学教堂山的UNC神经科学中心,美国教堂山; 3美国北卡罗来纳大学教堂山北卡罗来纳大学的细胞生物学与生理学系; 4卡罗来纳州发育障碍研究所,北卡罗来纳大学,美国教堂山教堂山的北卡罗来纳大学; 5神经遗传学计划,美国洛杉矶洛杉矶分校的David Geffen医学院神经病学系,美国洛杉矶; 6美国洛杉矶洛杉矶分校,自闭症研究与治疗中心,David Geffen医学院Semel Institute,美国洛杉矶分校; 7美国洛杉矶洛杉矶分校的David Geffen医学院人类遗传学系; 8美国洛杉矶分校,加利福尼亚大学,加利福尼亚大学戴维·格芬医学院精神病学和生物行为科学系,洛杉矶分校1美国北卡罗来纳大学教堂山的遗传学系; 2美国北卡罗来纳大学教堂山的UNC神经科学中心,美国教堂山; 3美国北卡罗来纳大学教堂山北卡罗来纳大学的细胞生物学与生理学系; 4卡罗来纳州发育障碍研究所,北卡罗来纳大学,美国教堂山教堂山的北卡罗来纳大学; 5神经遗传学计划,美国洛杉矶洛杉矶分校的David Geffen医学院神经病学系,美国洛杉矶; 6美国洛杉矶洛杉矶分校,自闭症研究与治疗中心,David Geffen医学院Semel Institute,美国洛杉矶分校; 7美国洛杉矶洛杉矶分校的David Geffen医学院人类遗传学系; 8美国洛杉矶分校,加利福尼亚大学,加利福尼亚大学戴维·格芬医学院精神病学和生物行为科学系,洛杉矶分校
一碳/叶酸 (1C) 代谢提供 DNA 和组蛋白甲基化所需的甲基基团,并参与维持干细胞的自我更新。二氢叶酸还原酶 (DHFR) 是 1C 代谢中的关键酶,在新皮层发育的早期阶段,在人类和小鼠神经祖细胞中高度表达。在这里,我们研究了 DHFR 在发育中的新皮层中的作用,并报告说,降低其在人类神经类器官和小鼠胚胎新皮层中的活性会加速间接神经发生,从而影响新皮层的神经元组成。此外,我们表明,降低神经祖细胞中的 DHFR 活性会导致一碳/叶酸代谢物的减少,并与 H3K4me3 水平的变化相关。我们的研究结果揭示了 DHFR 在控制新皮层发育的特定步骤中发挥的意想不到的作用,并表明 1C 代谢线索的变化会影响细胞命运转变。
这篇早期发布的文章已经过同行评审并被接受,但尚未经过撰写和编辑过程。最终版本在风格或格式上可能略有不同,并将包含指向任何扩展数据的链接。
图1 |对发展中的人类新皮层的多摩变调查。a,本研究中使用的样品的描述。b,snmultiome数据的UMAP图,显示了33种细胞类型的分布。c,UMAP图显示了年龄组的分布(左)和区域(右)。d,跨发育阶段和皮质区域的单个细胞类型的比例。条是由细胞类型颜色编码的,其传说可以在面板a中找到。 E,左,单个细胞类型中的签名转录因子(TF)的点。中间,汇总的染色质可及性概况在跨类型的签名TFS启动子上。蓝色箭头代表每个TF的转录起始位点和基因体。正确,跨细胞类型的标志性TF的归一化Chromvar基序活性的热图。
功能磁共振成像(fMRI)是绘制人脑功能的最重要方法之一,但仅对潜在的神经活动进行了间接度量。最近的发现表明,fMRI血液氧合水平依赖性(粗体)信号的神经生理学相关性可能在区域特异性。我们检查了海马和新皮层中fMRI BOLD信号的神经生理学相关性,其中神经结构的差异可能导致各个信号之间的关系不同。用深度电极植入的15例人类神经外科患者(10名雌性,5名男性)进行了无语言召回任务,而电生理活性则同时记录在海马和新皮层部位。同一患者随后在fMRI会议上进行了类似的任务版本。随后的记忆效应(SME)是针对这两种成像模态的计算,作为编码相关的大脑活动的模式,可预测以后的自由回忆。线性混合效应建模表明,大胆和伽马频段中小企业之间的关系通过记录位置的LOBAR位置进行了调节。粗体和高伽玛(70 - 150 Hz)中小型企业在许多新皮层中都具有协变量。这种关系在海马中逆转,在海马中,大胆和高伽玛中小型中小型中小型企业之间存在负相关。我们还观察到内侧颞叶中的大胆和低伽马(30 - 70 Hz)中小型脉冲之间存在负相关关系。这些结果表明,海马中BOLD信号的神经生理学相反与新皮层中观察到的神经生理相反。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年11月27日发布。 https://doi.org/10.1101/2023.11.27.568858 doi:Biorxiv Preprint
摘要 微生物成分对胎儿大脑有一系列直接影响。然而,人们对介导这些影响的细胞靶点和分子机制知之甚少。神经祖细胞 (NPC) 控制大脑的大小和结构,了解调节 NPC 的机制对于理解大脑发育障碍至关重要。我们发现心室放射状胶质细胞 (vRG),即主要的 NPC,是抗生素治疗产妇肺炎期间产生的细菌细胞壁 (BCW) 的靶点。BCW 通过缩短细胞周期和增加自我更新来增强 vRG 的增殖潜力。扩增的 vRG 繁殖以增加所有皮质层的神经元输出。值得注意的是,识别 BCW 的 Toll 样受体 2 (TLR2) 位于 vRG 中初级纤毛的底部,BCW-TLR2 相互作用抑制纤毛发生,导致 Hedgehog (HH) 信号的解除抑制和 vRG 扩增。我们还表明,TLR6 是 TLR2 在此过程中的重要伙伴。令人惊讶的是,在健康条件下,仅 TLR6 就需要设定皮质神经元的数量。这些发现表明,来自 TLR 的内源性信号在新皮质正常发育过程中抑制皮质扩张,而 BCW 通过 TLR2/纤毛/HH 信号轴改变大脑结构和功能来拮抗该信号。
1精神病学和生物行为科学系,加利福尼亚大学,加利福尼亚大学,加利福尼亚州洛杉矶分校,加利福尼亚州洛杉矶分校。 2 SEMEL神经科学与人类行为研究所,加利福尼亚大学,洛杉矶,美国加利福尼亚州洛杉矶。 3智力和发展障碍研究中心,SEMEL神经科学与人类行为研究所,加利福尼亚大学,洛杉矶分校,美国加利福尼亚州洛杉矶。 4人类遗传学系,大卫·格芬医学院,加利福尼亚大学,洛杉矶,加利福尼亚州洛杉矶,美国加利福尼亚州。 5宾夕法尼亚州宾夕法尼亚大学宾夕法尼亚州佩雷尔曼医学院精神病学系。 6宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州佩雷曼医学院遗传学系。 7位于宾夕法尼亚州宾夕法尼亚州费城儿童医院的寿命脑研究所,美国宾夕法尼亚州。 8加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学统计系。 9生物信息学跨部门计划,加利福尼亚大学,洛杉矶,洛杉矶,加利福尼亚州,美国加利福尼亚州。 10田纳西大学健康科学中心,田纳西州田纳西州田纳西州,美国11个遗传学,基因组学和信息学系11蛋白质组学和代谢组学中心,田纳西州孟菲斯的圣裘德儿童研究医院。 12,美国纽约州锡拉丘兹的SUNY UPSTATE医科大学精神病学系。 13中部南大学生命科学学院医学遗传学医学遗传学和湖南关键实验室;长沙,匈奴,410008,中国1精神病学和生物行为科学系,加利福尼亚大学,加利福尼亚大学,加利福尼亚州洛杉矶分校,加利福尼亚州洛杉矶分校。2 SEMEL神经科学与人类行为研究所,加利福尼亚大学,洛杉矶,美国加利福尼亚州洛杉矶。3智力和发展障碍研究中心,SEMEL神经科学与人类行为研究所,加利福尼亚大学,洛杉矶分校,美国加利福尼亚州洛杉矶。4人类遗传学系,大卫·格芬医学院,加利福尼亚大学,洛杉矶,加利福尼亚州洛杉矶,美国加利福尼亚州。5宾夕法尼亚州宾夕法尼亚大学宾夕法尼亚州佩雷尔曼医学院精神病学系。6宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州佩雷曼医学院遗传学系。 7位于宾夕法尼亚州宾夕法尼亚州费城儿童医院的寿命脑研究所,美国宾夕法尼亚州。 8加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学统计系。 9生物信息学跨部门计划,加利福尼亚大学,洛杉矶,洛杉矶,加利福尼亚州,美国加利福尼亚州。 10田纳西大学健康科学中心,田纳西州田纳西州田纳西州,美国11个遗传学,基因组学和信息学系11蛋白质组学和代谢组学中心,田纳西州孟菲斯的圣裘德儿童研究医院。 12,美国纽约州锡拉丘兹的SUNY UPSTATE医科大学精神病学系。 13中部南大学生命科学学院医学遗传学医学遗传学和湖南关键实验室;长沙,匈奴,410008,中国6宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州佩雷曼医学院遗传学系。7位于宾夕法尼亚州宾夕法尼亚州费城儿童医院的寿命脑研究所,美国宾夕法尼亚州。8加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学统计系。 9生物信息学跨部门计划,加利福尼亚大学,洛杉矶,洛杉矶,加利福尼亚州,美国加利福尼亚州。 10田纳西大学健康科学中心,田纳西州田纳西州田纳西州,美国11个遗传学,基因组学和信息学系11蛋白质组学和代谢组学中心,田纳西州孟菲斯的圣裘德儿童研究医院。 12,美国纽约州锡拉丘兹的SUNY UPSTATE医科大学精神病学系。 13中部南大学生命科学学院医学遗传学医学遗传学和湖南关键实验室;长沙,匈奴,410008,中国8加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学统计系。9生物信息学跨部门计划,加利福尼亚大学,洛杉矶,洛杉矶,加利福尼亚州,美国加利福尼亚州。10田纳西大学健康科学中心,田纳西州田纳西州田纳西州,美国11个遗传学,基因组学和信息学系11蛋白质组学和代谢组学中心,田纳西州孟菲斯的圣裘德儿童研究医院。12,美国纽约州锡拉丘兹的SUNY UPSTATE医科大学精神病学系。 13中部南大学生命科学学院医学遗传学医学遗传学和湖南关键实验室;长沙,匈奴,410008,中国12,美国纽约州锡拉丘兹的SUNY UPSTATE医科大学精神病学系。13中部南大学生命科学学院医学遗传学医学遗传学和湖南关键实验室;长沙,匈奴,410008,中国
1 Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America, 2 Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America, 3 Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America, 4 Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of美国,美国密歇根大学医学院5人类遗传学系,美国密歇根州安阿伯市,美国,美国6号神经生物学系,杜克大学医学中心,北卡罗来纳州达勒姆大学医学中心,美国,美国北卡罗来纳州7号,杜克大学生物医学工程系美国,美国密歇根大学医学院精神病学系9
恶意化)。此外,此SWTA图案的稀疏耦合也能够模拟TN芯片上的两态神经状态机,从而复制了对认知任务必不可少的工作记忆动力学。此外,将SWTA计算作为视觉变压器(VIT)中的预处理层的整合,增强了其在MNIST数字分类任务上的性能,证明了改进的概括性对以前看不见的数据进行了改进,并提出了类似于零量学习的机制。我们的方法提供了一个将大脑启发的计算转换为神经形态硬件的框架,并在英特尔的Loihi2和IBM的Northpole等平台上使用了潜在的应用。通过将生物物理精确的模型与神经形态硬件和高级机器学习技术集成,我们是将神经计算嵌入神经ai系统中的全面路线图。