。CC-BY-NC-ND 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2024 年 2 月 3 日发布了此版本。;https://doi.org/10.1101/2024.02.02.578725 doi:bioRxiv 预印本
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年11月8日。 https://doi.org/10.1101/2024.08.06.606879 doi:Biorxiv Preprint
此预印本版的版权持有人于2024年6月14日发布。 https://doi.org/10.1101/2024.06.12.598760 doi:Biorxiv Preprint
Neoformans是真菌性脑膜炎的最常见原因,是一种基础性菌群单倍体发芽的酵母,具有完整的性周期。通过生物学转化和长长的同源臂,通过同源重组进行基因组修饰是可行的,但是该方法是艰巨而不可靠的。最近,多个小组报道了使用CRISPR-CAS9作为生物学的替代方案,但仍然有必要使用长期的HOMOLOG ARM,从而限制了该方法的实用性。由于在先前研究中使用的链球菌CAS9衍生物在Neoformans中没有选择用于表达,因此我们设计,合成并测试了全梭状芽胞杆菌(C. neoformans)的全念珠菌(CNO)Cas9。我们发现,CAS9仅带有常见的Neoformans密码子和共有的C. Neoformans内含子以及TEF1启动子和终结器以及核定位信号(CNO Cas9或“ CNOCAS9”)可靠地可靠地在C. Neoformans菌株中可靠地编辑基因组。此外,使用带有短(50bp)同源臂的供体来完成编辑,这些捐赠者附着于标记DNA上,这些供体与合成的寡核苷酸和PCR扩增一起产生。我们还证明,先前的CNOCAS9稳定整合进一步增强了转移和同源重组效率。重要的是,这种操作不会影响动物的毒力。我们还建立了一个通用标记的模块,该模块具有密码子优化的荧光蛋白(Mneongreen)和一个串联的钙调蛋白结合肽-2X标志标签,允许对蛋白质进行本地化和纯化研究,以对相应的基因进行简短授权的重新构造对相应的基因进行修改。这些工具使Neoformans中的短体系基因组工程能够。
1,弗吉尼亚州林奇堡的自由大学骨病学院,弗吉尼亚州林奇堡2个生物学与化学系,自由大学,林奇堡,弗吉尼亚州林奇堡3 3医学系,杜克大学医学院,杜克大学医学院,北卡罗来纳州北卡罗来纳州北卡罗来纳州新近加密氏菌,是一个机会性的真实性病原体,负责为每年艾滋病死亡的15%。杜克大学的先前工作确定了许多基因在新生虫中显示出碱性pH的生长改变,其中包括Gene cnag_05866,这是酿酒酵母中PRM1的同源物,涉及质膜膜融合。我们的目标是验证该基因是否参与了pH适应并影响新梭菌的毒力。首先,使用CRISPR-CAS9在野生型(WT)C。Neoformans菌株CM2049中删除了PRM1。为了将突变体重构为WT表型,将PRM1基因克隆到质粒PSDMA25中,并转化为PRM1Δ菌株。然后对PRM1Δ和重构菌株进行各种表型/应激源测试。YPD pH 8上的点测定显示WT菌株和PRM1Δ菌株之间的生长差异,这支持了以下假设:Neoformans C. Neoformans中的PRM1同源物会影响其适应碱性pH的能力。此外,在PRM1δ和RIM101δ中看到了生长的相似性,表明PRM1可能会响应pH适应的途径。使用Galleria模型的毒力研究表明,WT和PRM1Δ菌株之间的毒力没有统计学上的显着差异。PRM1Δ突变体的含义将通过新生梭菌疾病的鼠吸入模型进一步评估。总体而言,我们的数据支持以下假设:CNAG_05866是PRM1的直系同源物,并且参与了Neoforman C的pH适应,但是PRM1对Neoformans毒力的影响仍然不清楚。
近年来,耐多药病原体备受关注。因此,在形势失控之前,迫切需要新的抗真菌和抗菌药物靶点。内含肽是一种多肽,它不需要辅因子或外部能量就能从外显肽自我剪接,从而导致外显肽片段的连接。内含肽存在于许多生物体中,包括人类病原体,如结核分枝杆菌、新型隐球菌、格特隐球菌和烟曲霉。由于内含肽元素不存在于人类基因中,因此它们是开发抗真菌和抗生素的有吸引力的药物靶点。到目前为止,已经报道了一些内含肽剪接抑制剂。金属离子如 Zn 2+ 和 Cu 2+ 以及含铂化合物顺铂通过与活性位点半胱氨酸结合来抑制结核分枝杆菌和新型隐球菌中的内含肽剪接。发现小分子抑制剂 6G-318S 及其衍生物 6G-319S 可抑制新生隐球菌和格特隐球菌中的内含肽剪接,MIC 为纳摩尔浓度。内含肽还用于许多其他应用。内含肽可用于使用小分子激活细胞内的蛋白质。此外,分裂内含肽可用于在实验性基因治疗中传递大基因,并利用毒素-抗毒素系统杀死混合微生物群中的选定物种。此外,分裂内含肽用于合成环肽和开发细胞培养模型,以在生物安全级 (BSL) 2 设施中研究包括 SARS-CoV-2 在内的传染性病毒。这篇小型评论讨论了内含肽在药物发现和治疗研究中的最新研究进展。
Tansarli和Chapin(2019)的系统综述和荟萃分析检查了生物局部膜片脑膜炎/脑膜炎(ME)面板的诊断准确性。[2]对2016年至2019年进行的13项前瞻性和回顾性研究进行了审查(n = 3,764名患者);荟萃分析中包括8例(n = 3,059例)。荟萃分析中包括的是Leber [2016],[3]的研究,如下所述。研究中偏见的风险混合在一起,但倾向于低风险,指数测试方面最有问题。在任何研究中均未发现适用性。符合条件,与参考标准相比,研究必须提供灵敏度和特异性数据。研究中的患者感染了由面板上发现的多种成分引起的(细菌,病毒,加密型新羊角/gatti)。表2总结了准确性的灵敏度,特异性和其他测量值。假阳性结果的最高比例是肺炎链球菌(17.5%)和链球菌(15.4%)。对于单纯疱疹病毒1和2,肠病毒和C. neoformans/gatti,假阴性比例最高。使用ME面板的假阳性结果速率表明应谨慎使用此方法,应使用其他诊断方法来确认面板结果。
取决于所涉及的酵母菌物种,与其他唑烷抗真菌剂的抗性主要机制涉及(i)通过(i)改变型氨基酸14α-甲基甲基酶的氨基酸组成,从而损害该药物在细胞中的积累,(II)增加药物外生物的含量(iiiiiiiiii)。有报道说,除白色念珠菌以外的念珠菌物种上都有近次感染,这些念珠菌通常固有地降低了易感性(C. glabrata)或对氟康唑的抗性(例如,C. Krusei,C。Auris)。这种感染可能需要替代性抗真菌治疗。在白色念珠菌中,麦角固醇合成途径的阻塞主要是由于ERG3编码的固醇C5,6-二酸酶的阻滞而引起的,在耐药物种中编码的candida glabrata,candida glabrata,candida glabrata,candida blabrata,主要是由cr anderiped and Drection and Drectruationant and Drection 2 and Drectraught and Drection 2 and Drectraption 2)细胞中药物的外排。因此,对氟康唑的耐药性通常会赋予对其他偶氮抗真菌剂的抗性。 在Neoformans中,研究表明,该物种中存在相同的主要耐药机制,并且这些机制可能会受到事先暴露于Azole抗真菌药剂的影响。对氟康唑的耐药性通常会赋予对其他偶氮抗真菌剂的抗性。在Neoformans中,研究表明,该物种中存在相同的主要耐药机制,并且这些机制可能会受到事先暴露于Azole抗真菌药剂的影响。
PING CHEN 葡萄糖-PTS 调节甘油代谢和过氧化氢介导的血链球菌竞争 FABIANA ROGLIERO 新型聚氨酯基聚合物材料在运动护齿制造中的生物相容性 ANH HAO DANG 重新定位 FDA 批准的抗抑郁药 2-PCPA 以治疗牙周炎 ADRIAN REQUEJO 小鼠脑部感染新生隐球菌后星形胶质细胞的强效活化 ANJALI SONI 利用虚拟和增强现实技术彻底改变正畸教育、诊断和治疗计划 EDISON N. TRAN CRISPR-Cas 系统可以调节 PGN_1547:牙龈卟啉单胞菌 ATCC 33277 中的一种新的假设毒力因子 BEN L. OFRI 了解心理弹性对医疗干预期间患者幸福感的影响DANNIEL PHAM 血链球菌葡萄糖-PTS 的遗传特征,检测其竞争力和适应度 THOMAS DUARTE 使用机器学习和非破坏性检测来预测定制护齿套的机械性能 TUSHAR DESARAJU 探索 TLR2 信号对 TLR2-/- 小鼠生态时间序列多菌牙周感染后牙槽骨吸收的影响 ASHITHA YADA TLR2-/- 小鼠生态时间序列多菌牙周感染 (ETSPPI) 后的牙周细菌传播 GRACE ADAMS Cbp+ 变形链球菌与老年人根龋的关联 RAFAEL GARCIA 新型隐球菌葡萄糖醛酸木甘露聚糖通过抑制嘌呤能来损害小胶质细胞趋化性受体
侵入性真菌疾病(IFD)代表了全球医疗系统的重大负担,在诊断,治疗和预防方面构成了重大挑战。真菌本质上无处不在,可以成为机会性病原体,尤其是在免疫系统疲软的个体中。IFD近几十年来一直在增加,这主要是由于免疫功能低下的患者数量增加,例如患有HIV/AIDS的患者,接受化学疗法,器官移植受者和接受延长皮质类固醇治疗的个体。此外,医疗技术的进步,包括侵入性程序和广谱抗菌剂使用,促进了IFD的不断增长的发生率。在地理上,特定真菌病原体的患病率各不相同。念珠菌物种是全球IFD的最常见原因,白色念珠菌是主要物种。曲霉物种,包括曲曲霉,在环境中很普遍,并引起侵入性的曲霉菌病,尤其是在免疫功能低下的个体中。与IFD有关的其他真菌包括Neoformans,组织浮游生物和粘膜种类。
