镁带结构的特征是与手性相反的模式的能量分裂,即使在没有应用的外部领域和相对论效应的情况下,由于海森伯格交换相互作用中的各向异性。我们基于原型RUO 2(一种原型的“ D-Wave” Altermagnet)对基于从头开始的电子结构计算进行定量原子自旋动力学模拟,以研究由热梯度产生的镁电流。我们报告了大量自旋Seebeck和自旋Nernst效应,即纵向或横向自旋电流,具体取决于磁子相对于晶体的繁殖方向,以及与温度ProFile中的非线性相关的有限自旋积累。我们的发现与Altermagnetic自旋组对称性以及线性自旋波理论和半经典Boltzmann转运理论的预测一致。
图S4。 扫描跨INSE通道的NERNST效果的光电流图:(a)设备示意图显示了跨INSE通道的GR/5L-INSE异质结构和电气检测的照明。 在此示意图之后,任何测得的电流都被迫流过半导体。 (b)与扫描光电流图同时测量的感兴趣区域的激光反射图。 这种测量使我们能够将激光的位置与观察到的信号相关联。 被选中的位置分别标记为石墨烯和INSE/石墨烯异质结构的位置1和2分别为位置(c)Nernst效应信号记录了不同的磁场和50µW的激光照明和50µW的激光照明和V_G = 0 V的位置1和2,位于1和2的位置,在1和2中亮着,在1和2的位置上,在Chemaine ElectereDere和Hersossctuction上闪闪发光。 裸露的石墨烯信号以蓝色显示,通过一个数量级放大,以更好地突出两条曲线之间的斜率差异。 进行测量是没有任何应用偏差的,因为它会掩盖Nern的效果,从而诱导图片中的其他光电流机制。 (d)扫描光电流图显示了在完整设备上的完整设备的测得的光电流,以-1T的施加了平面外电场。 (e)和(f)分别为0T和1T显示的类似扫描光电流图。图S4。扫描跨INSE通道的NERNST效果的光电流图:(a)设备示意图显示了跨INSE通道的GR/5L-INSE异质结构和电气检测的照明。在此示意图之后,任何测得的电流都被迫流过半导体。(b)与扫描光电流图同时测量的感兴趣区域的激光反射图。这种测量使我们能够将激光的位置与观察到的信号相关联。被选中的位置分别标记为石墨烯和INSE/石墨烯异质结构的位置1和2分别为位置(c)Nernst效应信号记录了不同的磁场和50µW的激光照明和50µW的激光照明和V_G = 0 V的位置1和2,位于1和2的位置,在1和2中亮着,在1和2的位置上,在Chemaine ElectereDere和Hersossctuction上闪闪发光。裸露的石墨烯信号以蓝色显示,通过一个数量级放大,以更好地突出两条曲线之间的斜率差异。进行测量是没有任何应用偏差的,因为它会掩盖Nern的效果,从而诱导图片中的其他光电流机制。(d)扫描光电流图显示了在完整设备上的完整设备的测得的光电流,以-1T的施加了平面外电场。(e)和(f)分别为0T和1T显示的类似扫描光电流图。
我们研究了 NiCo 2 O 4 (001) 外延膜中的塞贝克效应和异常能斯特效应,其中优先磁化方向垂直于薄膜平面。由于热电信号极小,我们定制了一个测量系统来检测微弱的电压信号。为了抑制来自测量电路中电触点的杂散电压信号,我们采取了以下措施。我们减少了带有超导磁体的商用低温恒温器输出与纳伏表之间的电触点数量。我们在制作电触点时采用银焊以降低剩余触点处的热电动势电压。通过采用这些措施,我们成功检测到小至 5 nV 的热电电压。与传统的铁磁金属相比,NiCo 2 O 4 的观测热电效率非常小。