摘要:有许多关于如何由神经元控制行为的理论。测试和完善这些理论将很大程度上促进。此外,模拟神经系统本身就是系统神经科学中的大梦想之一。但是,这样做需要我们确定每个神经元的输出如何取决于其输入,这是我们称之为反向工程的过程。目前对哺乳动物神经系统的关注,但是这些大脑令人难以置信,仅允许记录微小的子系统。在这里,我们认为,系统神经科学的时间已经成熟,可以努力进行较小的系统,而秀丽隐杆线虫是理想的候选系统,因为既定的餐水生理学技术可以捕获和控制每个神经元的活性并扩展到成千上万的实验。可以组合跨种群和行为的数据,因为整个个体神经系统在形式和功能上都在很大程度上保守。现代基于机器学习的建模应该可以对秀丽隐杆线虫的脑状态和行为的令人印象深刻的广度进行模拟。对整个神经系统进行逆向工程的能力将使人工智能系统和所有系统的设计有益于神经科学的设计,从而实现基本见解以及新的方法来研究逐渐更大的神经系统。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecom- mons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。
神经康复是运动康复领域中发展迅速的一个领域,其专门目的是恢复中枢神经系统 (CNS) 的神经可塑性。神经可塑性的概念是指大脑在学习或接触丰富环境后自我重组的能力,这种能力会持续人的一生。因此,对中枢神经系统损伤患者进行特定的治疗是有益的。神经可塑性益处最大化的时间框架至关重要,中风后约 12 周会出现平台期 ( 1 )。因此,通过提供适时且精心设计的治疗,充分利用这种高水平的大脑重组至关重要。已经开发出一系列方法用于急性、亚急性或慢性损伤阶段的中枢神经系统恢复。这些方法包括启动或增强技术,例如末端执行器机器人、外骨骼或虚拟现实,其中许多方法已被证实是有效的 ( 2 , 3 )。然而,临床实践仍然缺乏具体的指征来说明哪种疗法最有效、应使用多长时间以及患者有哪种障碍。因此,本研究课题旨在探索新的神经康复理念和方法、对现有技术的改进以及发现研究或临床空白,包括治疗和康复的预测性研究。越来越多的证据支持在神经康复中使用外骨骼和/或矫形器(Cho 等人)、虚拟现实(Bian 等人)(4)和脑机接口(Carino-Escobar 等人;de Freitas Zanona 等人)等创新技术。这些技术可以提供更具沉浸感和吸引力的治疗环境,一些研究报告称,中枢神经系统损伤患者的运动功能和认知能力得到显著改善(5)。除了新的干预技术外,使用测量皮质活动的诊断技术可以更深入地了解运动学习(6)以及这些技术可能引起的变化,这些变化不仅在功能层面,而且在神经可塑性方面。然而,还需要进一步研究,以确定哪些技术和干预措施对不同的患者群体最有效,并制定个性化的治疗计划。除了创新技术外,还有
周围神经系统可以看作是一个庞大的神经元网络,该神经元网络向整个人体发出信号。实际上,如[1]所示,“周围神经系统(PNS)中的所有信息流沿轴突沿轴突传输,称为动作电位”。但是,由于神经损伤,可以预防这种神经信号或动作电位的普通传导。在这种情况下,将信息准确地传递到有机体内的预期目的地或部分。诚然,可以理解,物理疗法对在周围神经系统的受损部分中恢复正确的功能非常有帮助。然而,由于人体在人体内部的成就仍然很难形象化神经活动。模拟神经系统将提供一个平台,以可视化系统的工作原理以及受损的神经如何影响PN。的确,这项研究的目的是模拟一个虚拟网络,该虚拟网络显示了人类周围神经系统的一般拓扑,例如,模拟了人类手臂的神经结构和行为),该网络显示了如何将信号路由到其正确的目的地并展示其系统中的模拟生物神经损害。
创造性问题解决问题的一个关键方面是不同的思维,它涉及为给定问题生成多个解决方案或观点。神经科学研究表明,与具有较低创造力水平的人相比,具有较高不同思维水平的个体表现出不同的神经活动模式。例如,在需要不同思维的任务中,已经观察到与认知灵活性相关的大脑区域的激活,例如背外侧前额叶皮层。此外,与创造性认知有关的大脑区域的结构差异,例如前扣带回皮层和海马,与创造能力的个体差异有关。
解剖学讲义 第 3 节:神经系统 中枢神经系统:大脑和脊髓 神经系统在解剖学和功能上分为两部分,中枢神经系统(大脑和脊髓)和周围神经系统(神经节、12 对脑神经和 31 对脊神经)。周围神经系统 (PNS) 可进一步划分为躯体神经系统 (SNS)(整合对骨骼肌的控制)和自主神经系统 (ANS)(大部分情况下自动调节重要的内脏器官和系统)。大脑 在解剖学上,我们可以根据信息处理的方式将大脑分为六 (6) 个部分: 1. 大脑 2. 间脑 3. 中脑 4. 小脑 5. 脑桥 6. 延髓 右侧是大脑的中矢状切面,显示了人脑的各个区域和六个主要部分(红色圆圈数字),从信息处理的最高级别到最低级别。 1. 大脑 大脑是人脑中最大、最发达的区域(见上文),被认为是最高功能的中心。其主要功能包括: 对感官知觉的意识;对运动的自主控制(调节骨骼肌运动);语言;性格特征;复杂的心理活动,如思考、记忆、决策、预测能力、创造力和自我意识。大脑由 5 个脑叶组成,以下是有关它们的一些基本信息:额叶 - 位于额骨内,是 5 个脑叶中最大、最复杂的脑叶,与人类的高级智力功能和行为方面有关。初级运动皮层控制身体骨骼肌的运动。顶叶 - 受颅骨顶骨保护,该脑叶主要负责解释和整合身体感觉输入。体感皮层与触觉、振动、温度和一般身体感觉的接收和感知有关。还涉及空间定向、运动协调、阅读、写作和数学计算。
自最近发现以来,脑膜淋巴系统已重塑了我们对中枢神经系统(CNS)液体交换,废物清除,免疫细胞贩运和免疫特权的理解。脑膜淋巴管也已被证明可以在功能上改变神经疾病的结果及其对治疗的反应,包括脑肿瘤,炎症性疾病,例如多发性硬化症,中枢神经系统损伤,以及神经衰落的疾病,例如阿尔茨海默氏症和帕克森的疾病。在这篇综述中,我们讨论了脑膜淋巴细胞对神经系统疾病的贡献的最新证据,以及在这些疾病下操纵脑膜淋巴管的可用实验方法。最后,我们还讨论了利用脑膜淋巴管作为中枢神经系统治疗干预的主要目标,并可能导致脑部疾病的药物递送。
9 大希腊 卡坦扎罗大学 UNICZ 大学 10 巴里大学 - 阿尔多莫罗 UNIBA 大学 11 帕尔马大学 - 分支 1 UNIPR 大学 12 佛罗伦萨大学 UNIFI 大学 13 IRCCS 圣马蒂诺综合医院 HSM 医院 14 IRCCS 博洛尼亚神经科学研究所 ISNB 医院 15 比萨圣安娜高等研究院 SSSA 医院 16 Bambino Gesù 儿童医院 OPBG 医院 17 欧洲脑研究所 Rita Levi-Montalcini EBRI 基金会 18 IRCCS SYNLAB SDN SYNLAB 医院 19 Telethon 基金会 ETS TIGEM 基金会 20 Don Carlo Gnocchi 基金会 ONLUS-IRCCS FDG 医院 21 IRCCS 圣拉斐尔 SR 医院 22 Dompè Farmaceutici DOMPE' 公司 23 Alfasigma ALFASIGMA 公司 24 ASG 超导体 ASG 公司 25 TAKIS Srl TAKIS 公司 表 A1:合作伙伴名单
历史上,胰岛β细胞一直被视为血糖的主要调节器,当胰岛素分泌无法补偿外周组织胰岛素抵抗时,就会导致 2 型糖尿病 (T2D)。然而,血糖也受胰岛素非依赖性机制的调节,而这些机制在 T2D 中失调。有证据表明,中枢神经系统 (CNS) 在胰岛素分泌与胰岛素敏感性变化的适应性耦合以及胰岛素非依赖性葡萄糖处置的调节中都发挥着作用,因此,中枢神经系统 (CNS) 已成为血糖稳态的基本参与者。在这里,我们回顾并扩展了一个整合模型,其中 CNS 与胰岛一起建立和维持防御的血糖水平。我们讨论了该模型对于理解正常血糖稳态和 T2D 发病机制的意义,并强调了可能恢复 T2D 患者正常血糖的集中靶向治疗方法。
中枢神经系统 (CNS)(大脑和脊髓)和周围神经系统 (PNS) 之间存在关键差异,例如神经胶质细胞类型、是否有血脑屏障保护、突触连接模式等。然而,这两个神经系统分支之间还有许多相似之处,包括神经元结构和功能、神经免疫和神经血管相互作用,以及或许最重要的是神经可塑性(包括神经元存活、神经突生长、突触形成、神经胶质生成等过程)和神经退行性(神经元死亡、周围神经病变,如轴突病变和脱髓鞘)之间的平衡。本文汇集了有关 CNS 和 PNS 之间神经系统健康和疾病的共同机制的最新研究证据,特别是肥胖和糖尿病等代谢疾病。这一证据支持了以下观点:神经系统的两部分密切相关,之前研究不足的中枢神经变性或周围神经变性情况实际上可能通过共同的遗传和细胞机制同时在整个神经系统中表现出来。由于大脑研究和周围神经研究之间的研究孤岛以及神经科学研究领域过分强调大脑,这一主题尚未得到充分探索。在人体的这一神经系统中,神经元如何保持健康而不是遭受损伤和疾病可能存在共同且相互关联的机制——这为理解神经疾病病因和未来神经保护疗法的开发提供了新的机会。