• HUM141: Principles of Economics • HUM131: Innovation & Entrepreneurship • HUM133: Communication and Negotiation Skills • HUM132: Management and Leadership Skills • HUM152: History of Art & Architecture • HUM151: History of Engineering & Technology • HUM153: The Character of Egypt • HUM154: Arabic • HUM112: Safety
投资组合相对于基准投资组合的碳足迹[2]。它涉及将投资从较高的碳排放资产转移到较低的碳排放资产。气候解决方案是主题投资和战略,直接有助于减轻气候变化并适应其影响。这些解决方案着重于促进绿色经济的融资技术,项目和实践,例如在太阳能,风能和水力发电上的投资,碳捕获解决方案,可持续基础设施或绿色房地产。为包括气候解决方案,提出了两种构成:对高度暴露于气候变化的部门的最低限度,与欧盟分类法的最小份额(或CAPEX)相符。不幸的是,在CTB和PAB基准的最终版本中,对绿色足迹的参考(例如,绿色收入或资本支出)消失[16]。此外,气候影响部门的最终版本包括大量行业,这使得与包含气候解决方案的标准无关[12]。
8/6/23 力拓在澳大利亚拥有大量采矿、材料加工和其他业务,包括皮尔巴拉的铁矿石资产组合,包括采矿业务、铁路网络和港口业务;远北昆士兰的铝土矿、加工设施、港口设施和发电站;以及昆士兰中部的氧化铝精炼厂和塔斯马尼亚和昆士兰中部的铝冶炼厂。因此,力拓可能会受到政府气候变化和脱碳政策的重大影响。为管理任何此类冲突:(a)我不会向力拓披露任何有关政府政策或计划的非公开信息,这些信息是我作为净零经济机构咨询委员会(董事会)成员所了解的。(b)在适当和可行的情况下,董事会应寻求其他主要澳大利亚能源用户和其他可能受到政府气候变化和脱碳政策重大影响的实体(力拓除外)的咨询和意见。(c)我请求并提议,在可行的范围内,
正电子发射断层扫描(PET)和计算的刻录术(CT)通常共同用于检测肿瘤。PET/CT分割模型可以自动化肿瘤的描述,但是,当前的多模式模型不能完全阐明每种模式中的互补信息,因为它们要么串联PET和CT数据,要么在决策水平上融合它们。为了对抗这一点,我们提出了镜像u-net,它通过将多模式表示形式分配到模态特异性的解码器分支和辅助多模态解码器中,以多模态化的方式代替了传统的融合方法。在这些分支上,镜像u-net标志着一个针对每种模式量身定制的任务,以增强单峰特征,同时保留共享表示中的多模式特征。与以前的方法相比使用了其他方法或多任务学习,Mirror U-net将两个范式结合在一个统一的框架中。我们探索各种任务组合,并检查在模型中共享的哪些参数。我们在Autopet PET/CT和多模式MSD Braintumor数据集上评估了Mirror U-NET,证明了其在多模式分段中的有效性并在两个数据集中实现了先进的性能。代码:https://github.com/zrrrrr1997/ autopet_challenge_mirrorunet
摘要。这项工作旨在回顾人工神经网络 (ANN) 的最典型实现,这些实现在前馈神经网络 (FNN) 和循环神经网络 (RNN) 中实现。讨论了 ANN 架构和基本操作原理的本质区别。学习过程的问题分几个部分介绍。使用 ANN 进行预测的优势已在自适应教育学、医学和生物学分类、工业等多个热门领域得到证实。JEL:C45。关键词:人工智能;人工神经网络;前馈神经网络;循环神经网络;感知器。引用:Alytis Gruodis (2023) 人工神经网络在过程建模中的实现。当前实现概述。– 应用业务:问题与解决方案 2(2023)22–27 – ISSN 2783-6967。https://doi.org/10.57005/ab.2023.2.3
用户不希望在他们创建,存储,发送,删除,接收,接收或显示的任何内容,应用程序,应用程序,系统,计算机或网络资源(包括个人文件或任何使用该地区的Internet,计算机或网络资源),包括存储的文件和电子邮件,包括个人文件或任何使用。该地区保留监视,跟踪和日志网络访问和使用的权利;监视区用户的文件服务器空间利用;或拒绝防止未经授权,不适当或非法活动的访问权限,并可能撤销访问权限和/或执行适当的纪律处分。该地区应与互联网服务提供商(ISP),本地,州和联邦官员合法地合作,以涉及与滥用该地区的互联网和技术资源有关的调查。[6] [7] [8]
Jessica Hausauer博士,MNHPC Nikki Gruis Diekmann执行董事,MBA,MNHPC VIC SANDLER MD,MD,MNHPC临终关怀医学委员会主席,MNHPC VIC SANDLERJessica Hausauer博士,MNHPC Nikki Gruis Diekmann执行董事,MBA,MNHPC VIC SANDLER MD,MD,MNHPC临终关怀医学委员会主席,MNHPC VIC SANDLER
高质量的高分辨率(HR)磁共振(MR)图像提供了更详细的信息,可用于可靠的诊断和定量图像分析。深度综合神经网络(CNN)显示出低分辨率(LR)MR图像的MR图像超分辨率(SR)的有希望的Abil。LR MR图像通常具有一些vi-Sual特征:重复模式,相对简单的结构和信息较少的背景。大多数以前的基于CNN的SR方法同样处理空间像素(包括背景)。他们也无法感知输入的整个空间,这对于高质量的MR IMPIMSR至关重要。为了解决这些问题,我们提出了挤压和激发推理注意网络(SERAN),以获得MR Image SR。我们建议从输入的全球空间信息中挤出注意力,并获得全球描述符。这样的全球描述符增强了网络专注于MR图像中更具信息区域和结构的能力。我们在这些全球描述符之间进一步建立了关系,并提出了引起关注的原始关系。全球描述符将以学习的关注进一步确定。为了充分利用汇总信息,我们通过学习的自适应注意向量自适应地重新校准了特征响应。这些注意向量选择一个全局描述符的子集,以补充每个空间位置以进行准确的细节和纹理重新分解。我们通过残留的缩放提出挤压和激发注意力,这不仅可以稳定训练,而且还使其对其他基本网络的灵感变得非常灵活。广泛的例证显示了我们提出的Seran的有效性,该塞伦在定量和视觉上清楚地超过了基准标记的最新方法。
•专用网络是一个针对一个B2B客户的专用移动网络,已经使用4G技术部署,但是5G中的新功能(主要是延迟)将允许更多用例。预期5G的私人网络质量化。•专用网络与公共5G网络是相同的技术,但是实现将是模块化和简单的。灵活性是关键:
