本文介绍了一种新型的高质量深层检测方法,称为局部伪影注意网(LAA-NET)。现有的高质量深伪检测方法主要基于有监督的二进制分类器与隐式注意机制。因此,它们并不能很好地概括到看不见的射精。为了解决这个问题,做出了两个主要贡献。首先,提出了多任务学习框架内的明确注意机制。通过结合基于热图的和自矛盾的关注策略,LAA-NET被迫专注于一些小伪像易受攻击的区域。第二,提出了一个增强的特征金字塔网络(E-FPN),作为一种简单而有效的机制,用于将歧视性低级特征扩展到最终特征输出中,具有限制冗余的优势。在基准基准上进行的实验表明,在曲线下(AUC)和平均精度(AP)方面,我们方法的优越性。该代码可在https:// github上找到。com/10ring/laa-net。
密码学术语:密码学用于加密的许多方案构成了被称为加密密码分析技术的研究领域,用于解释信息,而不必任何有关附加细节的知识落入了密码分析领域。密码分析是外行人所说的“打破代码”。密码学,加密和密码分析的区域共同称为密码学纯文本,这是原始的可理解信息或数据作为输入中的算法。密码文本这是作为输出产生的炒消息。这取决于明文和秘密键。对于给定消息,两个不同的键将产生两个不同的密码文本。密码文本是一个显然是随机的数据流,而且如下所示,是难以理解的。秘密密钥秘密键也输入了加密算法。密钥是独立于明文和算法的值。该算法将根据当时使用的特定键产生不同的输出。该算法执行的确切替代和转换取决于密钥。加密从明文转换为Cipher文本解密的过程恢复来自密封算法的密码文本恢复明文的过程。加密算法对更替代算法进行了各种替换和转换,这本质上是conviemption Algorithm in Gengryptight Algorithm in excryption Algorithm Run。它采用密码文本和秘密键,并产生原始的明文。
视觉问题回答(VQA)是一项具有挑战性的任务,需要通过关系推理对图像和问题进行跨模式理解,从而导致正确答案。为了弥合这两种方式之间的语义差距,以前的作品着重于所有可能对的单词区域对齐,而无需更多地关注相应的单词和对象。同样处理所有对,而无需考虑关系一致性,这是模型的性能。在本文中,为了对齐关系对并整合VQA系统的解释性,我们提出了一个跨模式的关系构建网络(CRRN),以掩盖不一致的注意力图,并突出相应单词对的全部潜在比对。具体来说,我们提出了两个相关性掩码,用于模式间和模式内突出显示,从而推断出图像中句子或区域中越重要的单词。可以通过掩盖未对齐的关系来增强一致对的关注相互关系。然后,我们提出了两个新颖的损失L CMAM和L SMAM,并具有明确的超级视觉,以捕获视觉和语言之间的细粒度相互作用。我们进行了彻底的实验来证明有效性并实现了GQA基准的竞争性绩效,以达到61.74%。
由于可能存在数据偏差和预测方差,图像去噪是一项具有挑战性的任务。现有方法通常计算成本高。在这项工作中,我们提出了一种无监督图像去噪器,称为自适应双自注意网络(IDEA-Net),以应对这些挑战。IDEA-Net 受益于生成学习的图像双自注意区域,其中强制执行去噪过程。此外,IDEA-Net 不仅对可能的数据偏差具有鲁棒性,而且还通过仅在单个噪声图像上应用具有泊松丢失操作的简化编码器-解码器来帮助减少预测方差。与其他基于单图像的学习和非学习图像去噪器相比,所提出的 IDEA-Net 在四个基准数据集上表现出色。 IDEA-Net 还展示了在低光和嘈杂场景中去除真实世界噪声的适当选择,这反过来有助于更准确地检测暗脸。源代码可在 https://github.com/zhemingzuo/IDEA-Net 获得。
信息安全教育和意识(ISEA)第3阶段项目是一项旗舰计划,旨在增强印度的网络安全能力。由电子和信息技术部(MEITY)率领,该项目着重于通过教育,技能发展和研究计划来增强国家的网络安全姿势。ISEA第三阶段的建立在其先前阶段的成功基础上,通过促进学术行业合作,促进利益相关者的认识,并在信息安全方面接受高级培训,以解决网络安全格局的日益增长的挑战。该计划强调在安全编码,加密,网络安全和IoT和AI等新兴技术等领域的能力建设。通过其整体方法,ISEA III期渴望创建一个安全的数字生态系统,并确保国家抵抗不断发展的网络威胁的弹性。通过其整体方法,ISEA III期渴望创建一个安全的数字生态系统,并确保国家抵抗不断发展的网络威胁的弹性。
级联的 CMOS 突触芯片包含一个 32x32 (1024) 个可编程突触的交叉阵列,已被制造为用于完全并行实现神经网络的“构建块”。突触基于混合数模设计,该设计利用片上 7 位数据锁存器来存储量化权重,并利用两象限乘法 DAC 来计算加权输出。突触具有 6 位分辨率,传输特性具有出色的单调性和一致性。已制造了一个包含四个突触芯片的 64 神经元硬件,用于研究反馈网络在优化问题解决中的性能。在本研究中,已在硬件中实现了 7x7 一对一分配网络和 Hop field-Tank 8 城市旅行商问题网络。已证明该网络能够实时获得最佳或接近最佳的解决方案。
投资组合相对于基准投资组合的碳足迹[2]。它涉及将投资从较高的碳排放资产转移到较低的碳排放资产。气候解决方案是主题投资和战略,直接有助于减轻气候变化并适应其影响。这些解决方案着重于促进绿色经济的融资技术,项目和实践,例如在太阳能,风能和水力发电上的投资,碳捕获解决方案,可持续基础设施或绿色房地产。为包括气候解决方案,提出了两种构成:对高度暴露于气候变化的部门的最低限度,与欧盟分类法的最小份额(或CAPEX)相符。不幸的是,在CTB和PAB基准的最终版本中,对绿色足迹的参考(例如,绿色收入或资本支出)消失[16]。此外,气候影响部门的最终版本包括大量行业,这使得与包含气候解决方案的标准无关[12]。
“为了建立有前途的职业或工业成功的基础,您需要三件事:质量,质量和质量!”网络系统和服务部(以前称为电信系)着重于网络和网络系统的关键领域:有线和无线网络的分析和设计,新的网络体系结构和协议,移动通信系统和服务,多媒体网络和媒体分发系统和服务系统和服务,密码和网络安全。补充关键领域的其他优势包括量子计算和通信,声学和工作室技术,信号处理,财务信息系统。我们的名字最近从电信部更改为网络系统和服务部,反映了我们的能力在过去几十年中发生了重大变化。这种变化是由电信系统和互联网的融合驱动的,从而导致了全球综合设备的集成网络,以及信息技术的广泛部署,尤其是网络,从而为基于创新的网络提供了新的网络。网络上电信部的70年经验仍然为我们提供了扎实的基础,我们可以为我们提供教学,研发活动,但该部门的新名称更好地描述了我们目前关注的内容以及我们如何思考未来。此外,该部门的强大工业合作为他们提供了极好的职业机会。我们由7名教授组成的团队,超过60名Sta效应和30多位博士学位学生可以动态地回应来自国民和国际层面和国际水平的官方领域的不断增长和领先的能力要求。我们的课程,实验室练习,个别学生项目和文凭项目为大学生和研究生创造了独特的机会,以获得高水平的知识和实践技能。我们总是在理论工作,应用研发之间寻求平衡。我们愿意与渴望学习并与工业合作伙伴合作的学生合作。如果您正在寻找研究和教育方面的质量和卓越,那么欢迎您进入网络系统和服务部!
在本文中,我们提出了一种新型的可变形神经关节网络 (DNA-Net),这是一种基于无模板学习的方法,用于从单个 RGB-D 序列进行动态 3D 人体重建。我们提出的 DNA-Net 包括一个神经关节预测网络 (NAP-Net),它能够通过学习预测一组关节骨骼来跟随输入序列中人体的运动,从而表示人体的非刚性运动。此外,DNA-Net 还包括有符号距离场网络 (SDF-Net) 和外观网络 (Color-Net),它们利用强大的神经隐式函数来建模 3D 几何和外观。最后,为了避免像以前的相关工作那样依赖外部光流估计器来获得变形线索,我们提出了一种新的训练损失,即基于易到难几何的损失,这是一种简单的策略,它继承了倒角距离的优点来实现良好的变形引导,同时仍然避免了其对局部不匹配敏感性的限制。DNA-Net 以自监督的方式直接在输入序列上进行端到端训练,以获得输入对象的 3D 重建。DeepDeform 数据集视频上的定量结果表明,DNA-Net 的表现优于相关的最先进方法,并且有足够的差距,定性结果还证明我们的方法可以高保真度和细节重建人体形状。
正电子发射断层扫描(PET)和计算的刻录术(CT)通常共同用于检测肿瘤。PET/CT分割模型可以自动化肿瘤的描述,但是,当前的多模式模型不能完全阐明每种模式中的互补信息,因为它们要么串联PET和CT数据,要么在决策水平上融合它们。为了对抗这一点,我们提出了镜像u-net,它通过将多模式表示形式分配到模态特异性的解码器分支和辅助多模态解码器中,以多模态化的方式代替了传统的融合方法。在这些分支上,镜像u-net标志着一个针对每种模式量身定制的任务,以增强单峰特征,同时保留共享表示中的多模式特征。与以前的方法相比使用了其他方法或多任务学习,Mirror U-net将两个范式结合在一个统一的框架中。我们探索各种任务组合,并检查在模型中共享的哪些参数。我们在Autopet PET/CT和多模式MSD Braintumor数据集上评估了Mirror U-NET,证明了其在多模式分段中的有效性并在两个数据集中实现了先进的性能。代码:https://github.com/zrrrrr1997/ autopet_challenge_mirrorunet