定向能战办公室 (DEWO) 和海军水面作战中心达尔格伦分部 (NSWCDD) 的定向能部门将过去的研究和数据与高功率微波 (HPM) 领域的持续创新相结合,以满足对非致命、非动能武器的迫切需求。HPM 武器可以描述为在射频 (RF) 或微波频谱中辐射电磁能量的非动能设备。它们旨在扰乱、拒绝、降低、损坏或摧毁目标。本质上,这是通过高功率电磁波在空气中传播并通过穿过结构的外层并将能量耦合到关键电子元件来拦截目标来实现的。由于目标是对各种目标都有效,HPM 已成为各种技术的统称:波形、源频率和不同信号带宽的分布。因此,HPM 研究和评估的目标是解决目前尚无交战选项的目标。 NSWCDD 正在致力于寻找最佳 HPM 任务平台并将相关技术应用到该领域。
我们建议通过双音驱动来周期性地调制现场能量,这可以进一步用于设计人工规范势。作为示例,我们表明,使用这种双音驱动设计的人工规范势,可以通过超导通量量子比特构建穿透有效磁通量的费米子阶梯模型。在该超导系统中,由于腿间耦合强度和有效磁通量的竞争,单粒子基态可以从涡旋相变为迈斯纳相。我们还提出了通过相邻量子比特之间的单粒子拉比振荡来实验测量手性电流的方法。与以前产生人工规范势的方法相比,我们的建议不需要辅助耦合器的帮助,并且原则上只有当量子比特电路保持足够的非谐性时才有效。具有有效磁通量的费米子梯子模型也可以解释为一维自旋轨道耦合模型,从而为量子自旋霍尔效应的实现奠定了基础。
摘要:磁接近性诱导的磁性磁性在过去十年中刺激了密集研究。然而,到目前为止,在相关异质结构中LNO层中的磁顺序尚未达成共识。本文报告了(111) - 定向LNO/LAMNO 3(LMO)超级晶格的分层铁磁结构。发现,超级晶格的每个时期都由一个绝缘的LNO间相相(厚度五个单位细胞,〜1.1 nm),一个金属LNO-INNER相位,是一个金属LNO-INNER相,一个导电性LMO-Interflacial相(厚度较差,厚度为3.0.7 nm),以及一个绝缘的LMO-inners nersners-nernernnernernernnernernernnernernernnernernernnernernnernernnernernernnernernernnernernernnernernernnernernnernernernnernernnernernnernernnernernnernernnernernnerners nernernnerners nerners nernernnernerners。所有这四个阶段都是铁磁性的,显示出不同的磁化。MN到Ni Interlayer电荷转移负责层次磁性结构的出现,这可能会在LNO/LMO界面上引起磁相互作用,并在LMO间接层内的双重交换。这项工作表明接近效应是操纵复杂氧化物的磁态和相关特性的有效手段。关键字:LANIO 3,LAMNO 3,接近效应,电荷转移,分层铁磁结构
摘要 - fog计算已成为强大的分布式计算范式,以支持具有严格延迟要求的应用程序。它在大型地理区域内提供了几乎普遍存在的计算能力。但是,雾系统是高度异构和动态的,这使得服务的放置决策非常具有挑战性,考虑到节点流动性,可能会随着时间的推移降低位置决策质量。本文提出了一种用于雾中服务放置的遗传学遗传算法(MGA),旨在支持节点的移动性,同时确保基础架构的能源耐高率和应用服务质量(QOS)要求。我们已经将这种方法与文献中最短的接入点迁移策略(SAP)的两个变体进行了比较,提出的移动性贪婪启发式(MGH)和基线简单的网格算法(SGA)。使用myifogsim模拟器进行的实验表明,与其他方法相比,MGA可确保在能量和延迟违规方面的良好表现。索引术语 - 事物,优化,移动性,雾计算,智能校园,QoS,Energy。
深脑刺激(DBS)是一种有效的治疗方法,可用于患有其他耐药性精神疾病(包括强迫症)的患者。皮质 - 纹状体回路的调节已被认为是一种作用机理。为了获得机理洞察力,我们监测了小鼠模型中皮质 - 纹状体区域中的神经元活性,以实现强迫性行为,同时系统地改变了内囊DBS的临床上与临床相关的参数。dbs对大脑和行为均显示出剂量依赖性的作用:招募了越来越平衡的激发和抑制性的数量,散布在整个皮质纹状体区域,而过度的修饰却降低了。这种神经元的募集并没有改变基本的大脑功能,例如静息状态活动,并且仅发生在清醒的动物中,表明对网络活动的依赖性。除了这些广泛的效果外,我们还观察到内侧轨道额皮层在治疗结果中的特定参与,这是通过光学刺激证实的。一起,我们的发现提供了机械洞察力,即DB如何对强迫行为发挥治疗作用。
Rick Kittles,PhD了解可能影响疾病的基因环境相互作用是建立在诊断,风险评估/风险改性,药物遗传学和生物学的个性化医学方法的基石。尽管医学和个性化医学可以影响临床决策,但目前最大的信息是基于欧洲血统的种群。其他人类基因组研究必须包括不同的人群,以评估DNA序列变化和环境影响对人类疾病风险的影响。在本文中,我们简要概述了人类基因组变异,并讨论了表观基因组学如何影响基因表达。探索了基因环境相互作用的例子,并与有色社区之间的几种健康差异和健康成果相关联。随着杰克逊心脏的研究,他们准备以其他人群无法检查基因和环境的下一步,我们将更接近更具包容性的个性化医学目标,从而将医学从治愈性转变为所有人的先发制人。(Ethn dis。2012; 22 [补充1]:S1-43 – S1-46)
虹膜物理学,近年来其他5 d过渡金属(TM)离子系统引起了人们的兴趣,包括5 d 1订购的双钙钛矿(DP)系统,用于其建议托管“隐藏”多极阶(5 D1¼W5Þ,re6Þ,re6Þ,os 7 s)[1-13] [1-13]。至关重要的是,典型的原子图有效地理解了液体物理学并不能令人满意地解释5 d 1 dps的物理学。在公式A 2 bb 0 O 6的5 d 1 dps中,唯一磁性5 d 1离子占据B 0位点,并具有由J effeff¼3= 2所描述的四倍退化基态构型。以这样的配置,随着角动量的自旋和轨道成分消失的净磁矩m¼2s-l消失了[1]。基于原子图的消失磁矩的预测失败了,但是,对于具有有限的磁矩的真实材料的情况[3,8,10]。存在被抑制但非零的杂志偶极矩的存在通常归因于空间扩展的TM-5 d轨道与
人类健康是由遗传学(G)和环境(E)决定的。这在暴露于同一环境因素的个体中清楚地说明了这一点。尚未开发出基因 - 环境相互作用(GXE)效应的定量度量,在某些情况下,甚至还没有就该概念达成明确的共识。例如,癌症是否主要来自“运气不好”还是“糟糕的生活方式”。在本文中,我们提供了一组GXE相互作用的示例,作为发病机理的驱动因素。我们强调了epige-netic法规如何代表分子碱基的共同连接方面。我们的论点收敛于GXE记录在细胞表观基因组中的概念,该概念可能代表了解宣告这些多半复杂的调节层的关键。开发一个解码此表观遗传信息的钥匙将提供疾病风险的定量度量。类似于引入估计生物年龄的表观遗传时钟,我们挑衅地提出了“表观遗传评分表”的理论概念,以估计疾病风险。
从根本上有用的玻璃是其光学的透明。当然有更强的建筑材料和其他同样惰性的容器材料,但是我们可以通过玻璃看到的事实使其非常特别。我们每天在窗户,瓶子和电子设备的屏幕上遇到的玻璃通常是硅酸盐玻璃的类型不同。硅酸盐玻璃可以传递超过90%的人类可以看到的光,即在400–800 nm的波长范围内。但是,可见光只是电磁频谱的一小部分。如果我们想以4,000–8,000 nm的波长查看光线,则以400-800 nm的波长传输光线的光线相同。因此,这些应用需要其他类型的玻璃。在电磁频谱的红外区域传输光线的设备在现代世界中,从非接触式温度计到用于修复我们视力的激光器。这些应用程序,更详细地讨论
量子场是物理世界的基本组成部分,它描述所有能量尺度上的物质量子多体系统以及电磁辐射和引力辐射。量子场工程实现了前所未有的测量灵敏度,典型案例是利用压缩光将激光干涉引力波天文台 (LIGO) 的本底噪声降低到散粒噪声极限以下 [1]。在连续变量 (CV) 量子场(又称量子模(代替离散变量 (DV) 量子位))中对量子信息进行编码,已经实现了数百万个量子模上的多体纠缠。这种规模在任何量子位架构中都是无与伦比的,它为量子计算、量子通信和量子传感定义了新的视野和范式。基于量子模式的纳米光子集成设备有可能超越基于量子比特的噪声中型量子 (NISQ) [ 2 ] 计算设备的性能,从而定义未来的量子技术。量子模式的自然实现是使用量子光,这也适用于传感 [ 3 – 6 ] 和通信。
