在本文中,我们提出了一种新型的可变形神经关节网络 (DNA-Net),这是一种基于无模板学习的方法,用于从单个 RGB-D 序列进行动态 3D 人体重建。我们提出的 DNA-Net 包括一个神经关节预测网络 (NAP-Net),它能够通过学习预测一组关节骨骼来跟随输入序列中人体的运动,从而表示人体的非刚性运动。此外,DNA-Net 还包括有符号距离场网络 (SDF-Net) 和外观网络 (Color-Net),它们利用强大的神经隐式函数来建模 3D 几何和外观。最后,为了避免像以前的相关工作那样依赖外部光流估计器来获得变形线索,我们提出了一种新的训练损失,即基于易到难几何的损失,这是一种简单的策略,它继承了倒角距离的优点来实现良好的变形引导,同时仍然避免了其对局部不匹配敏感性的限制。DNA-Net 以自监督的方式直接在输入序列上进行端到端训练,以获得输入对象的 3D 重建。DeepDeform 数据集视频上的定量结果表明,DNA-Net 的表现优于相关的最先进方法,并且有足够的差距,定性结果还证明我们的方法可以高保真度和细节重建人体形状。
微分同胚可变形图像配准在许多医学图像研究中至关重要,因为它提供了独特的属性,包括拓扑保存和变换的可逆性。最近基于深度学习的可变形图像配准方法利用卷积神经网络(CNN)从合成基本事实或相似性度量中学习空间变换,从而实现快速图像配准。然而,这些方法往往忽略了变换的拓扑保存和变换的平滑性,而平滑性仅由全局平滑能量函数来强制执行。此外,基于深度学习的方法通常直接估计位移场,这不能保证逆变换的存在。在本文中,我们提出了一种新颖的、有效的无监督对称图像配准方法,该方法最大化微分同胚图空间内图像之间的相似性,并同时估计正向和逆变换。我们使用大规模脑图像数据集在 3D 图像配准上评估了我们的方法。我们的方法实现了最先进的配准精度和运行时间,同时保持了理想的微分同胚特性。
由于可能存在数据偏差和预测方差,图像去噪是一项具有挑战性的任务。现有方法通常计算成本高。在这项工作中,我们提出了一种无监督图像去噪器,称为自适应双自注意网络(IDEA-Net),以应对这些挑战。IDEA-Net 受益于生成学习的图像双自注意区域,其中强制执行去噪过程。此外,IDEA-Net 不仅对可能的数据偏差具有鲁棒性,而且还通过仅在单个噪声图像上应用具有泊松丢失操作的简化编码器-解码器来帮助减少预测方差。与其他基于单图像的学习和非学习图像去噪器相比,所提出的 IDEA-Net 在四个基准数据集上表现出色。 IDEA-Net 还展示了在低光和嘈杂场景中去除真实世界噪声的适当选择,这反过来有助于更准确地检测暗脸。源代码可在 https://github.com/zhemingzuo/IDEA-Net 获得。
补充图3。生殖线ERG(P.Y373C)变体的保护和作用。(a)P.Y373C变体映射在ERG蛋白上(NM_182914)。(b)在跨物种的人类ETS转录因子和直系同源ERG蛋白的P.Y373C变体周围的氨基酸保存。(c)ERG P.Y373C变体对DNA结合的预测影响。预测极地接触(溶剂排除的氢键)(红线)和由于诱变引起的预测极性接触破坏(灰色虚线)。3D蛋白质建模在ERG-DNA X射线晶体学模型(PDB ID:6VGE A链中)进行,该模型从Uniprot Online数据库中获得。Pymol用于可视化P.Y373C的预测结构影响。(d)P.Y373C VAF与血小板计数的比较。液滴数字PCR用于确定来自族的1个成员的VAF(I-1,I-2,II-1,II-2)(表1-患者15、16、17)在显示的时间点上样本,还绘制了相应时间点的血小板计数。单核细胞(MNC),骨髓(BM),间充质基质细胞(MSC)。
摘要 在过去的几十年中,全基因组关联研究 (GWAS) 导致与人类特征和疾病有关的遗传变异急剧增加。这些进展有望带来新的药物靶点,但从 GWAS 中识别致病基因和人类疾病背后的细胞生物学仍然具有挑战性。在这里,我们回顾了基于蛋白质相互作用网络的 GWAS 数据分析方法。这些方法可以在没有直接遗传支持的情况下对 GWAS 相关位点或疾病基因相互作用因子中的候选药物靶点进行排序。这些方法可以识别出不同疾病中共同受影响的细胞生物学,为药物重新利用提供机会,也可以与表达数据相结合以识别局部组织和细胞类型。展望未来,我们预计这些方法将随着特定情境相互作用网络表征和罕见与常见遗传信号的联合分析方面的进展而得到进一步改进。
摘要。这项工作旨在回顾人工神经网络 (ANN) 的最典型实现,这些实现在前馈神经网络 (FNN) 和循环神经网络 (RNN) 中实现。讨论了 ANN 架构和基本操作原理的本质区别。学习过程的问题分几个部分介绍。使用 ANN 进行预测的优势已在自适应教育学、医学和生物学分类、工业等多个热门领域得到证实。JEL:C45。关键词:人工智能;人工神经网络;前馈神经网络;循环神经网络;感知器。引用:Alytis Gruodis (2023) 人工神经网络在过程建模中的实现。当前实现概述。– 应用业务:问题与解决方案 2(2023)22–27 – ISSN 2783-6967。https://doi.org/10.57005/ab.2023.2.3
本文记录了生产网络在求职和匹配过程中起着至关重要的作用。我们使用与多米尼加共和国的公司宇宙相匹配的雇主与雇主数据的数据记录了有关工人流动性的事实:1)工人在买家和供应商之间移动几乎两倍,在标准劳动力市场特征中,工人在供应商之间的预测几乎增加了两倍,而在标准劳动力市场特征中,比供应商在2)越来越多的收益量增加了,2)越来越多的收益企业,2)越来越多的收益企业,2)越来越多的收益企业,2)越来越多的收益企业,2)越来越多的繁殖力。当他们的企业从买家或供应商那里雇用时,4)供应链雇用后的公司到公司的贸易增加,以及5)购买者或供应商雇用的公司与企业增长更强劲有关。调查证据指出,供应链的人力资本,并更好地了解工作申请人是供应链中雇用的主要原因。这些结果揭示了一个新的渠道,通过哪些因素影响供应链的因素,例如国际外包或签约摩擦,影响劳动力市场。
为了展示其技术并挑战合成媒体因其近期滥用历史而获得的负面声誉,Alethea AI 制作了以下有关气候紧急情况的视频。这段讽刺性的合成视频是为 Apologia 项目制作的,该项目是由非营利组织 STEP 发起的气候变化宣传项目,令人不安地描述了 2032 年的世界状况。选择这一年份是因为科学家预测地球温度将达到相应的 +1.5°C 上限,这被广泛认为是不可挽回的。未来几周,人们将民主投票选出下一位应该为忽视气候紧急情况道歉的领导人。使用 Alethea AI 技术生成的所有合成视频都将带有显眼的免责声明,并加注水印以表明视频已被数字修改。
用户不希望在他们创建,存储,发送,删除,接收,接收或显示的任何内容,应用程序,应用程序,系统,计算机或网络资源(包括个人文件或任何使用该地区的Internet,计算机或网络资源),包括存储的文件和电子邮件,包括个人文件或任何使用。该地区保留监视,跟踪和日志网络访问和使用的权利;监视区用户的文件服务器空间利用;或拒绝防止未经授权,不适当或非法活动的访问权限,并可能撤销访问权限和/或执行适当的纪律处分。该地区应与互联网服务提供商(ISP),本地,州和联邦官员合法地合作,以涉及与滥用该地区的互联网和技术资源有关的调查。[6] [7] [8]