●RSN应与当地的儿童保育资源和推荐机构(CCR&R)合作,以确定如何在RSN中最好地使用学校准备税收抵免。业务可能对与RSN的潜在捐款相关的税收优势特别感兴趣。路易斯安那州目前提供一套公司和个人所得税信用额度,用于捐赠幼儿努力。路易斯安那州的准备就绪税收抵免是各种与托儿相关的费用或活动的五个可退还税收抵免。例如,企业可能会因向儿童保育资源和转诊机构捐款而获得税收抵免,这些捐赠与LDOE合同,向父母和育儿提供者提供信息和服务。为育儿中心建设或扩建提供资金,为中心购买设备,经营自己的中心或支持幼儿座位的企业也有资格获得可退还的税收抵免。有关路易斯安那州学校准备税收抵免的更多信息,请参见此链接。
为了解决高光谱遥感数据处理中遇到的同构问题,提高高光谱遥感数据在岩性信息提取与分类的精度,以岩石为研究对象,引入反向传播神经网络(BPNN),对高光谱图像数据进行归一化处理后,以岩性光谱与空间信息为特征提取目标,构建基于深度学习的岩性信息提取模型,并使用具体实例数据分析模型的性能。结果表明:基于深度学习的岩性信息提取与分类模型总体精度为90.58%,Kappa系数为0.8676,能够准确区分岩体性质,与其他分析模型相比具有较好的性能。引入深度学习后,提出的BPNN模型与传统BPNN相比,识别精度提高了8.5%,Kappa系数提高了0.12。所提出的提取及分类模型可为高光谱岩矿分类提供一定的研究价值和实际意义。
我们介绍了CGAPOSENET+GCAN,它通过使用几何Clifford代数网络(GCAN)增强了CGAPOSENET,这是相机姿势回归的架构。添加GCAN,我们仅从RGB图像中获得了相机姿势回归的几何感知管道。cgaposenet使用Clifford几何代数将四元组和翻译向量统一为单个数学对象,即电动机,可用于独特地描述相机姿势。cgaposenet可以在其他方法中获得综合结果,而无需调查损失功能或有关场景的其他信息,例如3D点云,这可能并不总是可用。cgaposenet就像文献中的几种方法一样,只学会了预测运动系数,并且没有意识到预测位于其几何含义的数学空间。通过利用几何深度学习的最新进展,我们从GCAN上修改了CGAPOSENET:从InceptionV3背骨中获得与摄像机框架相关的可能的运动系数的建议,然后通过在G 4,0中使用的一组层来,将它们通过单个电动机为单个电动机。网络的工作是几何意识,具有多活性价值in-
对抗训练(AT)是提高深度神经网络鲁棒性的最常用机制。最近,一种针对中间层的新型对抗攻击利用了对抗训练网络的额外脆弱性,输出错误的预测。这一结果说明对抗训练中对抗扰动的搜索空间不足。为了阐明中间层攻击有效的原因,我们将前向传播解释为聚类效应,表征神经网络对于与训练集具有相同标签的样本的中间层表示相似,并通过相应的信息瓶颈理论从理论上证明了聚类效应的存在。随后我们观察到中间层攻击违反了 AT 训练模型的聚类效应。受这些重要观察的启发,我们提出了一种正则化方法来扩展训练过程中的扰动搜索空间,称为充分对抗训练(SAT)。我们通过严格的数学证明给出了经过验证的神经网络鲁棒性界限。实验评估表明,SAT 在防御针对输出层和中间层的对抗性攻击方面优于其他最先进的 AT 机制。我们的代码和附录可以在 https://github.com/clustering-effect/SAT 找到。
我们提出了一种方法来弥合人类视觉计算模型与视觉障碍 (VI) 临床实践之间的差距。简而言之,我们建议将神经科学和机器学习的进步结合起来,研究 VI 对关键功能能力的影响并改进治疗策略。我们回顾了相关文献,目的是促进充分利用人工神经网络 (ANN) 模型来满足视障人士和视觉康复领域操作人员的需求。我们首先总结了现有的视觉问题类型、关键的功能性视觉相关任务以及当前用于评估两者的方法。其次,我们探索最适合模拟视觉问题的 ANN,并在行为(包括性能和注意力测量)和神经层面预测它们对功能性视觉相关任务的影响。我们提供指导方针,为未来针对受 VI 影响的个体开发和部署 ANN 的临床应用研究提供指导。
工作网络在其他政策领域(例如福利,工作和退休金)提供了更有限的覆盖范围(即社会保护; £2907亿英镑)。3例如,虽然青年期货基金会(YFF)专门研究工作和福利计划,但这仅与14-24岁的人有关。老年(州)养老金和服务(1,373亿英镑)以及疾病与残疾计划/福利(654亿英镑)是其他大型社会保护支出,仅在网络的衰老中心(CFAB)和货币和养老金服务(MAPS)中仅在非常有限的范围内涵盖了非常有限的范围。我们认为,“什么有效”证据和评估具有合理的范围,可以在该领域塑造,适应和测试计划和政策。
摘要 在过去的几十年中,全基因组关联研究 (GWAS) 导致与人类特征和疾病有关的遗传变异急剧增加。这些进展有望带来新的药物靶点,但从 GWAS 中识别致病基因和人类疾病背后的细胞生物学仍然具有挑战性。在这里,我们回顾了基于蛋白质相互作用网络的 GWAS 数据分析方法。这些方法可以在没有直接遗传支持的情况下对 GWAS 相关位点或疾病基因相互作用因子中的候选药物靶点进行排序。这些方法可以识别出不同疾病中共同受影响的细胞生物学,为药物重新利用提供机会,也可以与表达数据相结合以识别局部组织和细胞类型。展望未来,我们预计这些方法将随着特定情境相互作用网络表征和罕见与常见遗传信号的联合分析方面的进展而得到进一步改进。
文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
摘要:至关重要的是要问,代理如何仅使用通过习惯性感觉运动经验获得的部分世界模型来生成行动计划,从而实现目标。尽管许多现有的机器人研究都使用了前向模型框架,但存在高自由度的泛化问题。当前的研究表明,采用生成模型的预测编码 (PC) 和主动推理 (AIF) 框架可以通过学习低维潜在状态空间中的先验分布来开发更好的泛化,该先验分布表示从习惯性感觉运动轨迹中提取的概率结构。在我们提出的模型中,学习是通过推断最佳潜在变量以及突触权重来最大化证据下限来进行的,而目标导向规划是通过推断潜在变量来最大化估计下限来完成的。我们提出的模型在模拟中使用简单和复杂的机器人任务进行了评估,通过为正则化系数设置中间值,证明了在有限的训练数据下学习中具有足够的泛化能力。此外,比较模拟结果表明,由于先验学习将运动计划的搜索限制在习惯轨迹范围内,因此所提出的模型在目标导向规划中优于传统的前向模型。