研究指南,Acharya Nagarjuna 大学。摘要 对于所有规模的组织和 ISP,有史以来最具破坏性的攻击都是 DDoS 攻击 (分布式拒绝服务)。由于 DDoS 出租服务的可用性提高,数十亿不安全的僵尸网络和 IoT 设备的产生导致 DDoS 攻击增加。这些 DDoS 攻击的频率、规模和复杂程度不断增加。由于这些攻击日益智能化以及 IDS 的逃避,包括清理和基于签名的检测在内的传统方法受到了挑战。由于攻击规模主要集中在组织上,下一代安全技术无法跟上步伐。由于对人为干预的要求较高,基于异常的检测在误报和准确率方面存在各种限制。本文利用机器学习(ML)模型,基于开放的CICIDS2017数据集进行了DDoS异常检测。但是,使用该ML模型并精心调整超参数可以达到最大准确率。关键词:DDoS攻击,异常检测,机器学习,入侵检测系统,准确性。
密码学术语:密码学用于加密的许多方案构成了被称为加密密码分析技术的研究领域,用于解释信息,而不必任何有关附加细节的知识落入了密码分析领域。密码分析是外行人所说的“打破代码”。密码学,加密和密码分析的区域共同称为密码学纯文本,这是原始的可理解信息或数据作为输入中的算法。密码文本这是作为输出产生的炒消息。这取决于明文和秘密键。对于给定消息,两个不同的键将产生两个不同的密码文本。密码文本是一个显然是随机的数据流,而且如下所示,是难以理解的。秘密密钥秘密键也输入了加密算法。密钥是独立于明文和算法的值。该算法将根据当时使用的特定键产生不同的输出。该算法执行的确切替代和转换取决于密钥。加密从明文转换为Cipher文本解密的过程恢复来自密封算法的密码文本恢复明文的过程。加密算法对更替代算法进行了各种替换和转换,这本质上是conviemption Algorithm in Gengryptight Algorithm in excryption Algorithm Run。它采用密码文本和秘密键,并产生原始的明文。
癫痫发作类型识别对于癫痫患者的治疗和管理至关重要。然而,这是一个耗时耗力的困难过程。随着机器学习算法的进步,自动诊断系统有可能加速分类过程、提醒患者并支持医生做出快速准确的决策。在本文中,我们提出了一种新型多路径癫痫发作类型分类深度学习网络 (MP-SeizNet),它由卷积神经网络 (CNN) 和具有注意机制的双向长短期记忆神经网络 (Bi-LSTM) 组成。本研究的目的是仅使用脑电图 (EEG) 数据对特定类型的癫痫发作进行分类,包括复杂部分性、简单部分性、失神性、强直性和强直阵挛性癫痫发作。EEG 数据以两种不同的表示形式输入到我们提出的模型中。 CNN 接收从 EEG 信号中提取的小波特征,而 Bi-LSTM 接收原始 EEG 信号,以便我们的 MP-SeizNet 能够从癫痫发作数据的不同表示中进行联合学习,从而获得更准确的信息学习。我们利用最大的 EEG 癫痫数据库——天普大学医院 EEG 癫痫发作语料库 TUSZ v1.5.2 评估了所提出的 MP-SeizNet。我们使用三重交叉验证对不同患者数据评估了我们提出的模型,并使用五重交叉验证对癫痫发作数据评估了模型,结果分别获得了 87.6% 和 98.1% 的 F1 分数。
我们介绍了CGAPOSENET+GCAN,它通过使用几何Clifford代数网络(GCAN)增强了CGAPOSENET,这是相机姿势回归的架构。添加GCAN,我们仅从RGB图像中获得了相机姿势回归的几何感知管道。cgaposenet使用Clifford几何代数将四元组和翻译向量统一为单个数学对象,即电动机,可用于独特地描述相机姿势。cgaposenet可以在其他方法中获得综合结果,而无需调查损失功能或有关场景的其他信息,例如3D点云,这可能并不总是可用。cgaposenet就像文献中的几种方法一样,只学会了预测运动系数,并且没有意识到预测位于其几何含义的数学空间。通过利用几何深度学习的最新进展,我们从GCAN上修改了CGAPOSENET:从InceptionV3背骨中获得与摄像机框架相关的可能的运动系数的建议,然后通过在G 4,0中使用的一组层来,将它们通过单个电动机为单个电动机。网络的工作是几何意识,具有多活性价值in-
1 机器人、人工智能与实时系统,慕尼黑工业大学信息学院,德国慕尼黑,2 于利希超级计算中心 (JSC) 神经科学模拟与数据实验室,高级模拟研究所,JARA,于利希研究中心有限公司,德国于利希,3 瑞士国家超级计算中心 (CSCS),苏黎世联邦理工学院,瑞士卢加诺,4 神经计算单元,冲绳科学技术研究生院,日本冲绳,5 机器人与人工智能卓越系,生物机器人研究所,Scuola Superiore Sant'Anna,意大利蓬泰代拉,6 计算机架构与技术系,格拉纳达大学信息与通信技术研究中心,西班牙格拉纳达,7 图像处理研究团队,日本理化学研究所先进光子学中心,和光,8 计算工程应用单元,信息系统与网络安全总部,理化学研究所,日本和光市、9 日本东京电气通信大学信息与工程研究生院、10 德国于利希研究中心、神经科学与医学研究所 (INM-6)、高级模拟研究所 (IAS-6)、JARA BRAIN 研究所 I、11 德国亚琛工业大学计算机科学 3-软件工程、12 日本神户理化学研究所计算科学中心
补充图3。生殖线ERG(P.Y373C)变体的保护和作用。(a)P.Y373C变体映射在ERG蛋白上(NM_182914)。(b)在跨物种的人类ETS转录因子和直系同源ERG蛋白的P.Y373C变体周围的氨基酸保存。(c)ERG P.Y373C变体对DNA结合的预测影响。预测极地接触(溶剂排除的氢键)(红线)和由于诱变引起的预测极性接触破坏(灰色虚线)。3D蛋白质建模在ERG-DNA X射线晶体学模型(PDB ID:6VGE A链中)进行,该模型从Uniprot Online数据库中获得。Pymol用于可视化P.Y373C的预测结构影响。(d)P.Y373C VAF与血小板计数的比较。液滴数字PCR用于确定来自族的1个成员的VAF(I-1,I-2,II-1,II-2)(表1-患者15、16、17)在显示的时间点上样本,还绘制了相应时间点的血小板计数。单核细胞(MNC),骨髓(BM),间充质基质细胞(MSC)。
黑色素瘤是一种最可怕的皮肤癌,死亡率很高,最初是通过临床筛查、皮肤镜分析、活检和组织病理学检查进行目视诊断的。如果诊断和早期治疗延误,就会变得很危险。图像处理技术的最新发展有助于有效地检测黑色素瘤,因为由于病变的细粒度变化,检测黑色素瘤是一项艰巨的工作。本文研究了一种使用粒子群优化人工神经网络分析病变不规则性的新分类程序。在本研究论文中,提取病变的颜色特征并使用 PSO-ANN 分类器进行分类。通过标记假阳性率和真阳性率获得的接收者操作特性在分析计算机辅助诊断系统的诊断潜力方面起着至关重要的作用。应用于 ISIC 数据库的分类技术表明曲线下面积为 0.96853,特异性为 90.0%,灵敏度为 94.07%,准确率为 93.04%。
本文介绍了目前在 5G 和 B5G 网络中研究和利用的人工智能 (AI) 和机器学习 (ML) 的主要相关机制。该研究解释了 AI/ML 在电信行业的各种应用。介绍了一类神经网络,一般来说,它们是非线性统计数据建模和决策工具。它们通常用于对系统的输入和输出参数之间的复杂关系进行建模或在数据中查找模式。前馈神经网络、深度神经网络、循环神经网络和卷积神经网络属于这一类。强化学习关注智能代理必须如何采取行动才能最大化集体奖励,例如改善系统的属性。深度强化学习结合了深度神经网络,具有可以对非结构化数据进行操作的优势。提出了混合解决方案,例如组合分析和机器学习建模以及专家知识辅助机器学习。最后,介绍了其他具体方法,例如生成对抗网络 (GAN) 和无监督学习和聚类。
摘要准确的充电状态(SOC)估计取决于精确的电池模型。非线性和不稳定干扰因素的影响使准确的SOC估计变得困难。为了获得准确的电池模型,提出了基于NARX(具有外源输入的非线性自回归网络)的方法,提出了复发性神经网络和移动窗口方法。本文从以下三个方面提高了SOC估计的准确性,建模速度和鲁棒性。首先,为了克服对模型训练过程中数据量的过度依赖,使用NARX复发性神经网络来建立电池模型。narx(具有外部输入的非线性自回旋)具有延迟和反馈功能的复发性神经网络可以保留上一刻的输入和输出,并将其添加到下一个时刻的计算中。因此,使用少量数据实现了更好的估计结果;其次,移动窗口方法用于梯度爆炸和NARX模型训练过程中可能发生的梯度消失。第三,通过将其与不同的工作条件和不同温度下的其他方法进行比较,可以验证该模型的有效性。结果表明,所提出的模型具有更高的SOC估计准确性和速度。提出的模型的RMSE性能减少了约65%,并且执行时间缩短了约50%。