这项工作是在Ferheen Ayaz在格拉斯哥大学任职时完成的。作者的联系信息:伊德里斯·扎卡里亚(Idris Zakariyya),格拉斯哥大学,格拉斯哥,英国,idris.zakariyya@glasgow.ac.ac.uk; Ferheen Ayaz,城市,伦敦大学,伦敦,英国,ferheen.ayaz@city.ac.uk; Mounia Kharbouche-Harrari,法国Stmicroelectronics,Mounia.kharbouche-harrari@st.com;杰里米·辛格(Jeremy Singer),格拉斯哥大学,英国格拉斯哥,jeremy.singer@glasgow.ac.uk; Sye Loong Keoh,格拉斯哥大学,英国格拉斯哥,syeloong.keoh@ glasgow.ac.uk; Danilo Pau,意大利Stmicroelectronics,danilo.pau@st.com;何塞·卡诺(JoséCano),格拉斯哥大学,英国格拉斯哥,josecano.reyes@glasgow.ac.uk。
大脑计算机界面(BCIS)是传统上用于医学的系统,旨在与大脑相互作用以记录或刺激神经元。尽管有好处,但文献表明,专注于神经刺激的侵入性BCI当前的脆弱性使攻击者能够控制。在这种情况下,神经网络攻击成为能够通过进行神经过度刺激或抑制来破坏自发神经活动的威胁。先前的工作在小型模拟中验证了这些攻击,其神经元数量减少,缺乏现实世界中的复杂性。Thus, this work tackles this limitation by analyzing the impact of two existing neural attacks, Neuronal Flooding (FLO) and Neuronal Jamming (JAM), on a complex neuronal topology of the primary visual cortex of mice consisting of approximately 230,000 neurons, tested on three realistic visual stimuli: flash e ff ect, movie, and drifting gratings.在每个刺激的三个相关事件中评估了每次攻击,还测试了攻击25%和50%神经元的影响。根据尖峰和偏移百分比的数量,结果表明,攻击对电影产生了最大的影响,而黑暗和固定事件是最强大的。尽管两种攻击都可以显着发作神经活动,但果酱通常更具破坏性,产生更长的时间延迟,并且患病率更高。最后,果酱不需要改变许多神经元以显着发神经活动,而FLO的影响随着攻击的神经元数量而增加。
财务时间序列是高度非线性的,它们的运动是不可预测的。人工神经网络(ANN)在财务预测中有足够的应用。ANN模型的性能主要取决于其培训。尽管基于梯度下降的方法对于ANN训练很常见,但它们有几个局限性。烟花算法(FWA)是一种最近开发的元疗法,它受到夜间烟花爆炸现象的启发,它提出了诸如更快的融合,并行性和找到全球最佳优势之类的特征。本章打算开发一个由FWA和ANN(FWANN)组成的混合模型,用于预测收盘价系列,交换系列和原油价格时间序列。将FWANN的适当性与基于PSO的ANN,GA-基于ANN,基于DE的ANN和MLP模型等模型进行了比较。四个性能指标,MAPE,NMSE,ARV和R2被视为评估的晴雨表。进行性能分析以显示FWANN的适用性和优越性。
I. i tratotuction for Graphs(DNNG)代表了一个新兴领域,该领域研究如何将深度学习方法推广到图形结构化数据。由于图是一种功能强大且灵活的工具,可代表模式及其关系形式的复杂信息,从分子到蛋白质到蛋白质相互作用网络,再到社交或运输网络,或者在知识图上,或者在非常不同的范围内建模系统,这些方法已被用于许多应用领域。Since the pioneering works on trees, namely Recursive Neural Networks [1], [2], and directed acyclic graphs [3], [4], up to methods extended to general graphs, both by recursive approaches (namely Graph Neural Networks (GNNs) [5], [6]), or Graph Convolutional Network approaches (namely NN4Gs [7], GCNs, etc.),已经提出了许多用于图的神经模型[8],[9]。此外,除了纯神经网络范式之外,已经引入了术语深图网络(DGN),还包括基于贝叶斯的和生成的图形网络[9]。特别是在2015年之后,已经引入了更广泛的模型,并且在其各种化身中,DNNG和DGNS已成为图形表示在学习任务中的显着能力(例如节点分类,图形分类,图形分类,图形,图形和链接预测)的强烈研究的话题。目睹了对该领域的兴趣,已经出现了许多调查,例如[8],[9]和调查文件[8]获得了2024 IEEE TNNLS杰出纸质奖。但是,这一研究和应用领域仍然具有很高的活力且不断增长[10]。的确,DNNG和相关领域的越来越多的作品表明,学术和工业社区对开发更先进的技术和算法的需求仍然相当大,请考虑包含可信赖的
摘要 - 传统的人工神经网络从生物网络中汲取灵感,使用神经元的节点层来传递信息进行处理。更现实的模型包括在神经网络中的尖峰,更贴近捕获电气特性。然而,很大一部分脑细胞是神经胶质细胞类型的,特别是星形胶质细胞被认为在执行计算中起作用。在这里,我们介绍了一个修改后的尖峰神经网络模型,并在神经网络中具有添加类似星形胶质细胞的单元,并评估它们对学习的影响。我们将网络作为液态机器实现,并任务网络执行混乱的时间序列预测任务。我们改变了网络中类似神经元和星形胶质细胞样单元的数量和比率,以检查后一种单元对学习的影响。我们表明,与神经和星形细胞网络相反,神经元和星形胶质细胞的结合对于推动学习至关重要。有趣的是,我们发现当类似星形胶质细胞样和神经元的单位之间的比率大约为2:1时,达到了最高的学习率,这反映了生物星形胶质细胞与神经元比率的一些估计值。我们的结果表明,在跨时间范围内代表信息的类似星形胶质细胞样单元可以改变神经网络的学习率,并且应将星形胶质细胞与神经元的比例适当地调整为给定的任务。
在本说明中,我们重新审视了形式的神经常见微分方程(节点)的流量近似特性问题κx = a(t)σ(w(t)x + b(t))。近似特性已被视为最近文献中流量的可控性概率。当参数的维度等于神经网络的输入时,神经极被视为狭窄,因此宽度有限。我们得出了狭窄节点在近似值的近似流中的关系。由于现有的浅神经网络近似特性的结果,这有助于使用狭窄的神经ODE近似地估算哪种动态系统的流量。虽然在文献中已经建立了狭窄节点的近似特性,但这些证明通常涉及广泛的构造或需要从控制理论中调用深层可控性定理。在本文中,我们提供了一种更简单的证明技术,它仅涉及ODES和Gr'onwall的引理。此外,我们提供了一个估计狭窄节点所需的开关数量,以模仿单层宽神经网络作为速度领域的节点的行为。
深度神经网络(DNN)一直处于机器学习(ML)和深度学习(DL)(DL)的最新突破的最前沿。dnns越来越多地用于各种任务,从对卫星图像的地球观察和分析到医学诊断和智能聊天机器人。在这些进步方面的主要贡献是培训数据,计算资源和框架的丰富性,可以在范式中有效地培训越来越多,更复杂的DNN,该范式被称为分布式DL,尤其是分布式培训,这是该博士学位的重点。在分布式培训中,数据和计算分布在几个工人中,而不是单主培训,其中数据和计算都驻留在单个工人上。在这种设置中,分布式培训可以帮助克服单主训练的局限性,例如内存限制,计算瓶颈和数据可用性。但是,分布式培训带来了许多需要仔细解决的挑战,以便具有有效利用它的系统。这些挑战包括但不限于工人中计算和数据的有效分布,Straggler工人在集群中的统计(与其他工人相比,在计算步骤中大大落后于工人),尤其是在同步执行的工作,以及工人之间的交流和同步。这意味着系统应在计算和数据维度上提供可伸缩性。另一方面,从编程和可用性的角度来看,使用分布式培训范式通常需要了解分布式计算原理和具有分布式和数据密集型计算框架的经验以及对单霍斯特培训使用的代码进行重大更改。此外,随着训练A DNN涉及几个步骤和阶段(例如,数据准备,超参数调整,模型培训等。),希望可以重复使用彼此不同步骤的计算结果(例如,在高参数调谐试验中学习的权重,以便改善训练时间,以便在高参数调整试验中学习的权重)。最后,当开发更大,更复杂的DNN时,我们还需要了解每个设计选择的贡献。本博士学位论文的贡献解决了上述挑战,并共同优化了大规模的DNN培训,使其更易于访问,高效和计算可持续性,同时又可以在ML/DL工作流中延长冗余,并为进行消水研究提供了有用的工具。
摘要 - 基于卷积神经网络(CNN)的深度学习模型已用于对阿尔茨海默氏病进行分类或从T1加权大脑MRI扫描中推断痴呆症的严重程度。在这里,我们研究了添加扩散加权MRI(DMRI)作为这些模型的输入的值。在这一领域进行了许多研究,重点介绍了特定数据集,例如阿尔茨海默氏病神经影像学计划(ADNI),该计划评估了北美人(主要是欧洲血统)的人,因此我们研究了对ADNI培训的模型,该模型如何推广到来自印度(Nimhans Cohort)的新人口数据集。我们首先通过预测“大脑时代”来基准我们的模型 - 从其MRI扫描中预测一个人的年龄并继续进行广告分类的任务。我们还评估了在训练CNN模型之前使用3D CycleGAN方法来协调成像数据集的好处。我们的实验表明,在大多数情况下,在协调后的分类性能会提高,并且DMRI作为输入的性能更好。
摘要 - 准确的定位在高级自主驾驶系统中起重要作用。传统地图匹配的本地化方法通过具有传感器观测值的明确匹配的地图元素来解决姿势,通常对感知噪声敏感,因此需要昂贵的超级参数调整。在本文中,我们提出了一个端到端定位神经网络,该神经网络直接估计车辆从周围图像中构成,而没有与HD图明确匹配的感知结果。为确保效率和可预性能力,提出了一个基于BEV神经匹配的姿势求解器,估计在基于可区分的采样匹配模块中估计姿势。此外,通过将每个姿势DOF影响的特征表示形式解耦来大大降低采样空间。实验结果表明,所提出的网络能够执行分解器水平的定位,平均绝对误差为0.19m,0.13m和0.39◦在纵向,横向位置和偏航角度,同时表现出68.8%的推理记忆使用率降低了68.8%。
摘要 - 准确的定位在高级自主驾驶系统中起重要作用。传统地图匹配的本地化方法通过具有传感器观测值的明确匹配的地图元素来解决姿势,通常对感知噪声敏感,因此需要昂贵的超级参数调整。在本文中,我们提出了一个端到端定位神经网络,该神经网络直接估计车辆从周围图像中构成,而没有与HD图明确匹配的感知结果。为确保效率和可预性能力,提出了一个基于BEV神经匹配的姿势求解器,估计在基于可区分的采样匹配模块中估计姿势。此外,通过将每个姿势DOF影响的特征表示形式解耦来大大降低采样空间。实验结果表明,所提出的网络能够执行分解器水平的定位,平均绝对误差为0.19m,0.13m和0.39◦在纵向,横向位置和偏航角度,同时表现出68.8%的推理记忆使用率降低了68.8%。