特异性和评论此mAb识别〜50KDA的蛋白质,该蛋白质被识别为神经胶质原纤维酸性蛋白(GFAP)。它与其他中间丝蛋白没有交叉反应。GFAP在星形胶质体中特异性发现。GFAP是在中枢神经系统中定位良性星形胶质细胞和神经胶质起源的肿瘤细胞的非常流行的标记。对GFAP的抗体可用于区分大脑的转移性病变,并记录中枢神经系统外肿瘤的星形细胞分化。
歌曲在人脑中如何处理?在歌曲中,音乐和歌词在音乐语言的协同作用中紧密绑定,以传达含义和情感,而不是语言内容,从而提出了有关如何代表两个组成部分并将其整合到有凝聚力的感知整体中的问题。先前的研究指出了对音乐,语音和歌曲敏感的人类皮质的领域,它们既可以找到共享和专业网站。然而,听歌曲时的音乐和歌词处理之间的互动仍然很糟糕。为了解决这个问题,我们探究了具有脑电图的特定于音乐和语音的神经预测机制。当向听众提供歌曲或相应的嗡嗡声(无语言)旋律时,比较了旋律预测的编码。同样,在歌曲和相应的口语(无旋律)歌词中研究了语音预测的编码。我们发现,歌曲中音乐和言语的同意改变了它们的预测信号的产生和处理,从而改变了它们的神经编码。此外,我们在旋律和音素期望的神经编码中找到了一个权衡,其平衡取决于谁在听(反映听众的偏爱的内部驱动力,例如音乐训练)以及歌曲的创作和表演方式(外部驱动程序(外部驱动力)(反映了歌词和音乐的出色和音乐))。总的来说,我们的结果表明,歌曲涉及并行预测过程,以竞争共享处理资源的使用。
馈送前向神经网络是相关多体量子系统的新型变异波函数。在这里,我们提出了一个适用于具有实值波函数的系统的特定神经网络ANSATZ。它的特征是编码具有离散输出的卷积神经网络中量子波函数的最重要的坚固符号结构。通过进化算法实现其训练。我们在两个Spin-1 /2 Heisenberg型号上测试了我们的变异ANSATZ和训练策略,一种在二维方形晶格上,一个在三维的Pyrochlore晶格上。在前者中,我们的安萨兹(Ansatz)以高精度收敛到有序相的分析符号结构。在后者中,这种符号结构是未知的,我们获得的变异能量比其他神经网络状态更好。我们的结果证明了离散神经网络解决量子多体问题的实用性。
这项全面的基准测试研究探讨了三个著名的机器学习库的性能:Pytorch,带有Tensorflow后端的Keras和具有相同标准,软件和硬件的Scikit-Learn。评估包括两个不同的数据集:“学生表现”和“大学参加计划分类”,由Kaggle平台支持使用前馈神经网络(FNNS)作为建模技术。调查结果表明,Pytorch和Keras凭借Tensorflow Backend Excel在“大学参加计划分类”数据集中,Pytorch在这两个类别中都能达到无可挑剔的精度,召回和F1得分。虽然Scikit-Learn表现出值得称赞的性能,但在这种情况下,它落后于这些库。在“学生表现”数据集中,所有三个库都提供了可比的结果,而Scikit-Learn的精度最低为16%。带有Tensorflow后端的Keras和Pytorch的精度分别为23%。此外,当面对各种数据集类型时,本研究为每个图书馆的独特优势和缺点提供了宝贵的见解。pytorch成为要求需要高性能的任务的首选选择,而Scikit-Learn对于具有适度的计算需求的简单任务证明是有利的。带有张力的后端的凯拉斯在性能和用户友好之间取得平衡。这项基准测试努力为机器学习从业人员提供了宝贵的指导,以选择根据其项目要求量身定制的最合适的图书馆或框架。关键字 - 机器学习,Pytorch,Tensorflow,Scikit-Learn,神经网络它强调了图书馆选择在获得机器学习努力中的最佳结果中的关键作用。
图形神经网络(GNNS)学会通过汇总邻居的信息来表示节点。随着GNNS的深度增加,它们的接受场成倍增长,导致高度记忆成本。文献中提出的几件作品旨在解决通过抽样或使用历史嵌入来解决这一缺点。这些方法主要集中在同质图上的单标签节点分类的基准上,其中相邻的节点通常共享相同的标签。但是,这些方法中的大多数都依赖于可能不会在不同的图形或任务上概括的静态启发式方法。我们认为,采样方法应具有自适应,并适应每个图的复杂结构特性。为此,我们引入了葡萄,这是一种自适应抽样方法,该方法学会识别一组对于训练GNN至关重要的节点。葡萄通过优化下游任务目标来训练第二个GNN,以预测节点采样概率。我们评估涉及同质图和异地图的各种淋巴分类基准的葡萄。我们证明了葡萄在准确性和可伸缩性中的有效性,尤其是在多标签异质图中。此外,葡萄的使用数量级比基于历史嵌入的强基线要少。与其他采样方法不同,葡萄的精度也很高,即使样本量较小,因此可以扩展到大量图。我们的实施在线公开可用。1。
缺乏准确和全面分析的工具,阻碍了小鼠的全脑电路发展。没有现有的3D大脑图集提供每日产后分辨率,因为建造这种地图集是高度劳动的。轴突形态动态变化,使可靠的分割具有挑战性,许多2D数据集缺乏足够的Z分辨率用于交叉模式3D分析。在这里,我们提出了D-LMBMAPX,这是一种在产后发展的自动化全脑电路分析的深度学习管道。d-LMBMAPX构建高分辨率的3D小鼠大脑图谱,跨越了七个产后阶段,并在任何后日都采用自适应注册策略来进行全脑对齐。它还集成了用于轴突和SOMA分割的基础模型,从而实现了整个开发的定量电路评估。,我们实现了基于扩散模型的样式转移,以用于交叉模式和跨二维注册,并通过将遗传定义的神经元类型从2D ISH数据集对齐到我们的3D地图集进行了验证。使用D-LMBMAPX,我们在产后成熟过程中介绍了全脑多巴胺能预测。
问题:您在一家照明公司工作,该公司在工厂A中生产了60%的灯泡,在工厂B中的40%。工厂A的灯泡中有1%是有缺陷的,而工厂B的灯泡有2%是有缺陷的。如果随机灯泡有缺陷,则在工厂A中制造的概率是多少?
抽象的深度学习模型现在是现代音频综合的核心组成部分,近年来它们的使用已大大增加,从而导致了高度准确的多个任务系统。但是,这种对质量的追求以巨大的计算成本产生了巨大的能源消耗和温室气体的排放。这个问题的核心是科学界用来比较各种贡献的标准化评估指标。在本文中,我们建议依靠基于Pareto最优性的多目标度量,该指标同样考虑模型的准确性和能耗。通过将我们的度量应用于生成音频模型的当前最新技术,我们表明它可以逐渐改变结果的重要性。我们希望提高人们对高质量模型的能源效率的需求,以便将计算成本放在深度学习研究重点的中心。
在过去的几十年中,南极冰盖对海平面上升的贡献一直在增加,预计这种增加会随着温室气体排放的增加而持续(Fox-Kemper等人,2021年)。大部分质量损失发生在冰盖的边缘,通过从接地冰盖到海洋的冰块流动,主要是在南极西部(Khazendar等,2016; Mouginot等,2014; Mouginot et al。,2014; Rignot et al。这是因为冰盖边缘的浮冰搁架(通常是支撑冰流的支撑)迅速变薄并由于其底部的海洋引起的融化而撤退(Adusumilli等,2020; Paolo等,2015; Rignot et al。,2013)。在某些基岩配置中,增加了海洋诱导的熔体甚至会触发海洋冰盖不稳定性(Gudmundsson等,2012; Schoof,2007; Weertman,2007; Weertman,1974),这有可能强烈增加南极质量损失,在一个世纪以下的时间范围内(Fox-Kemper等人,20221年)。这使海洋引起的子架融化或基底融化是未来海平面上升的未来预测的主要不确定性之一。
摘要 - 从大脑信号中解码语言信息代表了脑部计算机之间的重要研究领域,尤其是在解密fMRI信号的语义信息的背景下。尽管现有工作使用LLM来实现此目标,但他们的方法并未使用端到端方法,并且避免了fMRI到文本的映射中的LLM,为探索LLM在听觉解码中留下了空间。在本文中,我们引入了一种新颖的方法,即大脑提示GPT(BP-GPT)。通过使用从fMRI提取的大脑表示,我们的方法可以利用GPT-2将fMRI信号解码为刺激文本。此外,我们介绍了文本提示,并将fMRI提示对齐。通过引入文本提示,我们的BP-GPT可以提取更强大的大脑提示,并促进预训练的LLM的解码。我们在开源的听觉语义解码数据集上评估了BP-GPT,与现有方法相比,所有受试者的流星的显着提高了流星的4.61%,而BERTSCORE的BERTSCORE则获得了2.43%。实验结果表明,将大脑表示作为进一步驱动听觉神经解码的LLM的提示是可行有效的。该代码可在https://github.com/1994cxy/bp-gpt上获得。索引术语 - 神经解码,大语言模型,fMRI,脑部计算机界面。