我们提出了一种新颖的神经可变形模型 (NDM),旨在从二维稀疏心脏磁共振 (CMR) 成像数据中重建和建模心脏的三维双心室形状。我们使用混合可变形超二次曲面对双心室形状进行建模,该超二次曲面由一组几何参数函数参数化,能够进行全局和局部变形。虽然全局几何参数函数和变形可以从视觉数据中捕捉到总体形状特征,但可以学习局部变形(参数化为神经微分同胚点流)来恢复详细的心脏形状。与传统可变形模型公式中使用的迭代优化方法不同,可以训练 NDM 来学习此类几何参数函数、来自形状分布流形的全局和局部变形。我们的 NDM 可以学习以任意尺度加密稀疏心脏点云并自动生成高质量的三角网格。它还可以隐式学习不同心脏形状实例之间的密集对应关系,以实现准确的心脏形状配准。此外,NDM 的参数直观,医生无需复杂的后处理即可使用。大型 CMR 数据集上的实验结果表明,NDM 的性能优于传统方法。
根据 JDL 数据融合组过程模型,在 0、1、2 和 2+/3 级进行数据和信息融合。为了支持多传感器 IMINT 和 GMTI 融合和 3D 可视化,我们构建了阿拉巴马州莫比尔码头和周边地区的 3D 站点模型,该模型允许使用我们现有的图像挖掘工具进行搜索,并提供 COP 环境,可以在其中模拟和可视化场景。我们开发了用于模拟交通和编写单个车辆移动脚本的软件,以支持场景创建。我们探索了几个新概念来支持 2+/3 级的更高级别的信息融合。一种方法源于对动态脉冲信息网络及其同步形式的神经处理的洞察。这些网络可以以关系和学习到的关联的形式绑定数据和语义知识。我们证明了使用这些网络在移动数据集中学习动态城市场景中移动车辆之间的简单关联的可行性。第二种方法涉及从图像和/或文本数据中提取知识结构。我们开发了两种从数据集中的概念共现中发现分类法的机制。我们证明了这些方法对融合图像和文本语料库的有效性。最后一种方法利用神经启发机制从移动的跟踪实体中学习正常行为模型。这些模型随后被使用
心血管疾病是全球性的全球健康问题,在全球范围内促进了发病率和死亡率。在这些疾病中,心律不齐的特征是心律不规则,提出了巨大的诊断挑战。这项研究介绍了一种使用深度学习技术,特别是卷积神经网络(CNN)的创新方法,以解决心律不齐分类的复杂性。利用多层心电图(ECG)数据,我们的CNN模型,包括六层带有残留块的层,在识别五种不同的心跳类型方面表现出了令人鼓舞的结果:左束分支块(LBBB),右束分支块(RBBB),右束支(RBBB),tryal buntial Efferatial Efferatial Promature Contract(apc),thematial Efferatial Contract(APC),phatcral andultral andultral andultral and andult andultral and anductal and p. pvC(PVC)(PVC),PVC。通过严格的实验,我们强调了我们方法学在增强心血管心律不齐的诊断准确性方面的变化潜力。
研究指南,Acharya Nagarjuna 大学。摘要 对于所有规模的组织和 ISP,有史以来最具破坏性的攻击都是 DDoS 攻击 (分布式拒绝服务)。由于 DDoS 出租服务的可用性提高,数十亿不安全的僵尸网络和 IoT 设备的产生导致 DDoS 攻击增加。这些 DDoS 攻击的频率、规模和复杂程度不断增加。由于这些攻击日益智能化以及 IDS 的逃避,包括清理和基于签名的检测在内的传统方法受到了挑战。由于攻击规模主要集中在组织上,下一代安全技术无法跟上步伐。由于对人为干预的要求较高,基于异常的检测在误报和准确率方面存在各种限制。本文利用机器学习(ML)模型,基于开放的CICIDS2017数据集进行了DDoS异常检测。但是,使用该ML模型并精心调整超参数可以达到最大准确率。关键词:DDoS攻击,异常检测,机器学习,入侵检测系统,准确性。
摘要准确的充电状态(SOC)估计取决于精确的电池模型。非线性和不稳定干扰因素的影响使准确的SOC估计变得困难。为了获得准确的电池模型,提出了基于NARX(具有外源输入的非线性自回归网络)的方法,提出了复发性神经网络和移动窗口方法。本文从以下三个方面提高了SOC估计的准确性,建模速度和鲁棒性。首先,为了克服对模型训练过程中数据量的过度依赖,使用NARX复发性神经网络来建立电池模型。narx(具有外部输入的非线性自回旋)具有延迟和反馈功能的复发性神经网络可以保留上一刻的输入和输出,并将其添加到下一个时刻的计算中。因此,使用少量数据实现了更好的估计结果;其次,移动窗口方法用于梯度爆炸和NARX模型训练过程中可能发生的梯度消失。第三,通过将其与不同的工作条件和不同温度下的其他方法进行比较,可以验证该模型的有效性。结果表明,所提出的模型具有更高的SOC估计准确性和速度。提出的模型的RMSE性能减少了约65%,并且执行时间缩短了约50%。
在数据科学和机器学习的不断发展的景观中,时间序列建模的领域已成为一个重要且挑战性的研究领域。时间序列数据及其独特的时间依赖性和顺序模式,在金融,医疗保健和气候科学等各个领域中找到了应用[1,2,3]。时间序列的准确建模对于创建强大的模型和理解复杂系统至关重要。建模时间序列的一种方法是通过生成模型[4],该模型在异常检测[5]和数据增强[6]中具有实际应用。在本文中,我们提出了一种基于时间序列生成和建模的神经SDE的新颖方法。尤其是,我们旨在创建一个可以利用默顿模型[3]作为跳跃框架的模型,该模型可以考虑实际市场的跳跃。归一化流是具有易生化密度估计的生成模型家族。主要思想是通过组成几个函数f i将初始复杂的数据分散分散转换为一个简单的想法。有一些
摘要 - 将神经梯度体系结构(NGA)集成到大语言模型(LLMS)中,导致了自然语言处理的明显进步,从而增强了生成文本的精确性和相干性。通过采用梯度驱动的计算,NGA根据上下文提示动态调整内部途径,从而使LLMS能够更有效地适应各种语言任务。这种方法证明了在上下文理解至关重要的情况下,诸如机器翻译,摘要和对话生成等任务的改进。NGA的融合也有助于减少常见问题(例如重复性或无关的产出),从而提高了生成内容的总体质量。此外,NGA的适应性允许在各个领域对LLM进行更有效的微调,从而促进了其在专业领域的应用,而无需大量的重新培训。经验结果表明,NGA在完善LLM的生成过程中的功效,强调了其大大提高自然语言处理系统性能的潜力。因此,NGA的采用代表了LLM体系结构演变中的关键进展,为开发更响应敏感和上下文意识到的语言模型提供了强大的框架。
我们描述了一种从聚合图统计数据(而不是图邻接矩阵)学习深度图生成模型 (GGM) 的新设置。匹配观察到的训练图的统计数据是学习传统 GGM(例如 BTER、Chung-Lu 和 Erdos-Renyi 模型)的主要方法。隐私研究人员已提出从图统计数据中学习作为保护隐私的一种方式。我们开发了一种架构来训练深度 GGM 以匹配统计数据,同时保留局部差异隐私保证。对 8 个数据集的实证评估表明,当两者都仅从图统计数据中学习时,我们的深度 GGM 比传统的非神经 GGM 生成更逼真的图。我们还将仅在统计数据上训练的深度 GGM 与在整个邻接矩阵上训练的最先进的深度 GGM 进行了比较。结果表明,图统计数据通常足以构建具有竞争力的深度 GGM,该深度 GGM 可生成逼真的图,同时保护本地隐私。