摘要:Grossberg的自适应共振理论的两个通用功能原理解密了所有生物学习和自适应智能的脑法规。低水平表示,这些规则整合了上下文配置的高级长期痕迹。这些普遍的编码原理导致在所有生物物种(从Aplysiae到灵长类动物)中建立了持久的脑签名。根据原始代码和大脑上下文调制的一些相关的经验发现,在本概念论文中重新审视了它们,突出了Grossberg的开拓性洞察力的潜力和开发理论解决方案的潜力,用于发育和认知机器人的智能解决方案。
神经普通微分方程(神经odes)是一个深层神经网络的新家族。本质上,神经极是一个微分方程,其向量场是神经网络。将神经颂作为机器学习模型的一部分,使该模型比标准模型更有效。的确,可以使用伴随灵敏度方法来训练模型的神经ode块,该方法计算梯度下降方法的梯度,以避免经典的反向传播的计算成本。我们对这一领域的贡献是对神经ode块的稳定性和合同性的研究,是一个微分方程,目的是设计训练策略,以使整体机器学习模型稳健且稳定,以抗对抗攻击。此海报基于[1],[2]和[3]。
在互联网时代,恶意URL是对网络用户的综合威胁。网络钓鱼的目的是通过用fal的界面欺骗受害者来窃取敏感信息。在网站网站的情况下,攻击者通常试图模仿社交媒体,银行和电子商务网站等知名且广泛使用的服务。这种欺骗的网站通常是用与原始站点相同的代码库构建的,这可能会使它们很难瞥见。值得庆幸的是,可以使用许多其他指标来区分良性和网络钓鱼网站。例如,大多数网络钓鱼URL往往很长,具有多个子域和特殊特征。域通常托管在可疑的主机上,并使用非信任当局进行的安全套接字层(SSL)认证。自从这些攻击开始时,已经实施了许多系统来试图克服它们。其中一些实现使用传统技术,例如黑名单或URL词汇特征的分析。否则,黑名单遭受了多种缺点,例如需要更新的人类援助和缺乏详尽的缺点。此外,它们不能用于看不见和隐藏的URL。其他技术利用机器学习将模型训练以基于许多示例来策划网站(Sahoo等,2017)(Benavides等,2020)。但是,在大多数方法中,网站的超链接结构尚未解决。
卷积神经网络(CNN)受到灵长类动物视觉系统的组织的启发,进而成为视觉皮层的有效模型,从而可以准确预测神经刺激反应。虽然对与大脑相关的对象识别任务进行培训可能是预测大脑活动的重要前提,但CNN的大脑样结构可能已经允许准确预测神经活动。在这里,我们在预测视觉皮层的神经反应方面评估了任务精制和脑部优化的卷积神经网络(CNN)的性能,并进行了系统的架构操作以及受过训练的和未经训练的特征提取器之间的比较,以揭示关键的结构组件影响模型性能。对于人类和猴子区域V1,采用RELU激活函数的随机重量CNN与平均或最大池的结合,显着超过了其他激活函数。随机体重CNN在预测V1响应时与训练有素的对应物相匹配。可以预测V1响应的程度与神经网络的复杂性密切相关,这反映了神经激活功能和汇总操作的非线性。但是,对于与物体识别(例如IT)相关的较高视觉区域,编码性能与复杂性之间的这种相关性显着弱。测试视觉区域之间的这种差异是否反映了功能差异,我们在纹理歧视和对象识别任务上训练了神经网络模型。与我们的假设一致,模型的复杂性与纹理歧视的性能更加密切,而不是对象识别。我们的发现表明,具有足够模型复杂性的随机重量CNN允许将V1活动视为训练有素的CNN,而较高的视觉区域则需要通过梯度下降通过训练获得的精确重量配置。
摘要 - 如今,深度学习方法在复杂的任务中起着关键作用,例如提取图像的有用特征,分割和语义分类。这些方法对近年来花类型分类具有重大影响。在本文中,我们正在尝试使用强大的深度学习方法对102种花种类进行分类。为此,我们使用了使用Densenet121体系结构的转移学习方法来对牛津102花数据集进行分类。在这方面,我们试图微调我们的模型,以实现对其他方法的更高准确性。,我们通过标准化图像和调整图像进行了预处理,然后将其喂入我们的微调预审计模型。我们将数据集划分为三组火车,验证和测试。我们可以达到50个时期的98.6%的准确性,这比研究中同一数据集的其他基于深度学习的方法更好。
摘要:背景:I型I型Hurler(MPS1-H)是由于IDUA基因的功能丧失突变而导致的严重遗传溶酶体储存障碍。随后的α -iduronidase酶的完全缺乏率直接导致溶酶体中糖胺聚糖(GAG)的进行性积累,从而影响许多组织的功能。因此,MPS1的特征是系统性症状(多器官功能障碍),包括呼吸道和心脏功能障碍,骨骼异常和早期致命神经变性。方法:为了了解MPS1神经病理学的基础机制,我们从两个IDUA等位基因的MPS1-H患者中产生了诱导的多能干细胞(IPSC)。为了避免因IPSC的不同遗传背景而导致的可变性,我们通过通过慢虫方法挽救IDUA表达来建立了IPENIC Control IPSC线。结果:在神经差异后观察到MPS1 -H和IDUA校正的同基因对照之间的明显差异。刮擦测定法显示了MPS1-H细胞的强迁移缺陷。此外,IDUA缺乏对基因表达的影响很大(FDR <0.05的340个基因)。结论:我们的结果表明,迄今为止,溶酶体降解,基因表达和神经运动之间的联系尚不清楚,这可能至少部分解释了MPS1-H患者的表型。
摘要。验证的可靠性和实用性取决于适当表示不确定性的能力。关于神经网络验证的大多数现有工作依赖于输入的基于集合或概率的信息的假设。在这项工作中,我们依靠不精确的概率(特定P-boxes)的框架提出了Relu神经网络的定量性验证,这可以说明输入的概率信息和认识论的不确定性。,可以提高紧密性和效率之间的贸易,同时处理在投入方面的不确定性类别的更一般类别,并提供了完全确保的结果。
摘要:风险识别和缓解对于在不断变化的供应链管理领域(SCM)中保持韧性和效率至关重要。现代供应网络中固有的复杂性和不确定性通常太复杂了,无法有效解决传统风险管理技术。为了增强供应链管理中的风险检测和管理,本研究探讨了将区块链技术与深度学习混合的混合策略。区块链通过为供应链操作监视提供透明和分散的系统来确保数据完整性和透明度。深度学习可以改善此过程,该过程分析了大量的历史数据和当前数据,以识别模式,预测威胁并提出对策。所提出的系统利用区块链技术的不可侵犯性和深度学习的预测能力来应对诸如欺诈检测,需求预测,供应商评估和中断预测等重要挑战。使用混合自动编码器和基于LSTM的深神经网络可以确保数据集。自动编码器用于降低维度和降低噪声和冗余数据,这些数据将进一步通过基于LSTM的神经网络,以增强基于区块链的交易数据的安全性。
摘要:汽车行业中的人工智能(AI)允许汽车制造商通过整合AI驱动的高级驾驶员辅助系统(ADAS)和/或自动化驾驶系统(ADS)(例如Traffiffififififient识别(TSR)系统),从而为智能和自动驾驶汽车提供智能和自动驾驶汽车。现有的TSR解决方案集中在他们认识的某些标志上。出于这个原因,提出了一种TSR方法,其中涵盖了更多的道路标志类别,例如警告,监管,强制性和优先符号,以构建一个智能和实时系统,能够分析,检测和分类为正确类别。提出的方法基于对不同的特征符号检测(TSD)和Traffim符号分类(TSC)的概述,旨在在准确性和处理时间方面选择最佳的特征。因此,提出的方法将HAAR级联技术与深CNN模型分类结合在一起。开发的TSC模型在GTSRB数据集上进行了培训,然后在各种路标上进行了测试。所达到的测试精度率达到98.56%。为了提高分类性能,我们提出了一个新的基于注意力的深卷积神经网络。由于获得的测试准确性和F1测量率分别达到99.91%和99%,因此所达到的结果比其他符号分类研究中存在的结果更好。在Raspberry Pi 4板上评估并验证了开发的TSR系统。实验结果证实了建议的方法的可靠性。
桑迪亚国家实验室是由霍尼韦尔国际公司(Honeywell International,Inc。)全资子公司的国家技术和工程解决方案(由美国国家能源部国家核安全管理部的全资子公司)管理和运营的多个实验室。