• 会议和研讨会的旅行奖: Eurandom 图拉普拉斯算子、多元极值和代数统计研讨会 (链接) 荷兰埃因霍温理工大学,2024 量子计算基础 (FQC2024) 研讨会 (链接) 伦敦大学皇家霍洛威学院,2024 YES 因果推理研讨会 (链接) 埃因霍温理工大学 Eurandom,2023 神经信息处理系统 (NeurIPS) 学者奖,2022 神经信息处理系统 (NeurIPS) 学者奖,2019 国际复杂系统会议 (ICCS),2018 NeurIPS 机器学习女性,2018 工业与应用数学学会 (SIAM) 年会,2018 强化学习和决策多学科会议 (RLDM),2017 NeurIPS 机器学习女性,2017神经科学 (ICMNS),2017 强化学习和决策多学科会议 (RLDM),2015 奥斯汀记忆与学习会议,2015
学分:[1] Christiano等。,《神经》 17中的深入强化从人类的偏好中学习。[2] Ziegler等。,来自人类偏好的微调语言模型,在Arxiv'19中。[3] Ouyang等。,培训语言模型在Neurips'22中按照人为反馈的指示进行指示。[4] Rafailov等。,直接偏好优化:您的语言模型是秘密的奖励模型,在Neurips'23中。[5] Hong等。,ORPO:Arxiv'24中的无参考模型的单片偏好优化。
Xin Zhao教授于2013年获得中国科学技术大学(USTC)的博士学位。 他的研究兴趣包括视频分析和性能评估,尤其是针对对象跟踪任务。 他发表了国际杂志和会议论文,例如IJCV,IEEE TPAMI,IEEE TIP,IEEE TCSVT,CVPR,ICCV,NEURIPS,NEURIPS,AAAI,IJCAI。 最近,他主要进行了有关人类计算机视力评估的研究。 他已经建立了几个广泛使用的计算机视觉基准(即,got-10k,videocube,sotverse,biodrone等))Xin Zhao教授于2013年获得中国科学技术大学(USTC)的博士学位。他的研究兴趣包括视频分析和性能评估,尤其是针对对象跟踪任务。他发表了国际杂志和会议论文,例如IJCV,IEEE TPAMI,IEEE TIP,IEEE TCSVT,CVPR,ICCV,NEURIPS,NEURIPS,AAAI,IJCAI。最近,他主要进行了有关人类计算机视力评估的研究。他已经建立了几个广泛使用的计算机视觉基准(即,got-10k,videocube,sotverse,biodrone等)使用在线评估平台。他定期担任以下会议和期刊的计划委员会成员或同行审稿人:CVPR,ICCV,ECCV,ICML,ICML,Neurips,ICLR,IJCV,IEEE TPAMI,IEEE TPAMI,IEEE TIP,IEEE TMM,IEEE TMM等
R关于地球观察研讨会计算机视觉系列的研讨会。WACV 2025。r人类决策系统中的人类对齐。IEEE CAI2025。R首次关于人工智能,公共政策和国家安全的研讨会。伯克利AI研究。2024。R地球系统建模的机器学习研讨会。ICML2024。R关于复杂评估深度学习和肉类挑战的研讨会。WACV 2024。关于人道主义援助和灾难反应的人工智能第六次研讨会。Neurips 2023。r第五次关于人道主义援助和灾难反应的人工智能研讨会。ICCV2023。R太空工业基础2023年。R第四届人工智能援助和灾难响应的研讨会。Neurips 2022。r关于人道主义援助和灾难反应的人工智能第三次研讨会。Neurips2021。R第二次关于人道主义援助和灾难反应的人工智能研讨会。Neurips 2020。用于数据发现和重用研讨会的人工智能。开放科学研讨会2020年。R软件硬件代码用于机器学习工作负载研讨会。mlsys 2020。人工智能援助和灾难反应研讨会的人工智能。Neurips2019。
大学和Riken AIP的Baiho访问科学家,他的研究重点是机器学习,深度学习,基础模型及其应用。他是MBZUAI MLD的访问研究学者,Microsoft Research和Alibaba Damo Academy的客座研究员,Riken AIP的博士后研究员。他撰写了MIT Press,Springer自然以及基金会和趋势的三本机器学习专着。他曾担任Neurips的高级主席,以及神经,ICML和ICLR的区域主席。他还曾担任IEEE TPAMI,MLJ和JAIR的副编辑,以及JMLR和MLJ的编辑委员会成员。他在Neurips获得了杰出的纸质奖,在Neurips的最有影响力的论文,著名的Neurips的区域主席,ICLR的杰出地区主席以及IEEE TNNLS的杰出副编辑。他获得了RGC早期职业计划,NSFC总体计划,IJCAI早期职业聚光灯,Riken Baiho奖,Dean杰出成就奖,Microsoft Research Startrack计划以及来自Bytedance,Baidu,Baidu,Alibaba and Tencent的教师研究奖。2。Tongliang Liu教授是悉尼大学悉尼AI中心的主任,Tongliang Liu教授是悉尼大学悉尼AI中心的主任,
人们对人工智能的伦理、社会、环境和经济影响的担忧日益加剧,引发了大量治理举措。除了传统的监管方法之外,互补的治理形式也可以帮助应对这些挑战 1 。一种这样的治理形式是基于社区的技术治理或“内部治理” 2 。在这里,基于社会考虑影响研究的措施从科学界内部发展而来,并在社区层面实施。最近一项此类举措来自世界上最大的人工智能会议之一 NeurIPS。2020 年初,该委员会宣布了一项新的投稿要求:投稿作者现在必须包含一份声明,说明其研究的更广泛影响,包括其“伦理方面和未来的社会后果” 3 。NeurIPS 的这一要求引发了人工智能研究界的不同反应,关于其目的和有效性的讨论出现在社交媒体和其他地方 4 。尽管很少有人否认确实需要识别和应对人工智能带来的伦理和社会挑战,但反应的多样性表明,对于正确的方法,以及个体研究人员或研究界(包括会议)在此过程中应承担的责任,几乎没有达成共识 5、6。这也凸显了进一步讨论 NeurIPS 要求和类似治理措施的目的、实施和效果的必要性。在本文中,我们希望为 NeurIPS 要求的讨论以及更普遍的会议提交中更广泛影响要求做出贡献。我们将新要求与其他既定的治理机制进行比较,并对其影响进行分析。我们的目标是 (1) 识别并明确引入 NeurIPS 更广泛影响要求所带来的风险和挑战,(2) 提出一系列措施来应对这些挑战,以及 (3)
•源自[Ho等,DDPM,Neurips 2020]和[Sohl-Dickstein等人,使用非平衡热力学的深度无监督学习,ICML 2015]
Roberta Reareanu是Meta的研究科学家,也是UCL的名誉讲师。她从纽约大学获得了计算机科学博士学位,在那里她从事深度强化学习的概括。目前,她通过培训反馈和与外部工具,环境和人类的互动来培训他们,从而增强基础模型,从而增强基础模型。罗伯塔(Roberta)先前已经在ICML 2021上的无监督RL(URL)的研讨会,开放式的代理人学习(芦荟)(芦荟)在ICLR 2022和Neurips 2023以及2023年NEURIPS 2023的社会负责语言模型研究工作室。