肌萎缩侧索硬化症是一种致命的神经退行性疾病,目前尚无治愈方法可以逆转其进展。其主要特征是核蛋白 TDP-43,该蛋白经历了不同的翻译后修饰,导致细胞核功能丧失,细胞质毒性增加。先前的报告表明,致病性 TDP-43 在各种情况下都表现出类似朊病毒的传播。为了推进预防 TDP-43 病理传播的治疗方法,我们研究了致病性 TDP-43 在散发性 ALS 患者淋巴母细胞中的潜在作用。我们使用散发性 ALS 患者的淋巴母细胞系作为致病性 TDP-43 的来源,并使用健康人类细胞(淋巴母细胞、成肌细胞、神经母细胞瘤 SH-SY5Y 或骨肉瘤 U2OS)作为受体细胞,以研究 TDP-43 蛋白病的播散和扩散。此外,我们评估了使用 CK-1 抑制剂靶向 TDP-43 磷酸化以防止病理传播的潜力。本文呈现的结果表明,致病形式的 TDP-43 分泌到散发性 ALS 淋巴母细胞的细胞外介质中,并可以通过细胞外囊泡运输,将 TDP-43 病理传播到健康细胞。此外,在病理细胞中也发现了隧道纳米管,可能参与 TDP-43 的运输。有趣的是,使用内部设计的 CK-1 抑制剂 (IGS2.7) 靶向 TDP-43 磷酸化足以阻止 TDP-43 病理传播,此外,它还具有恢复患者来源细胞中 TDP-43 蛋白稳态的已知作用。
摘要:很少有模型可以研究人类中枢神经系统中的神经突损伤。我们在这里使用多巴胺能LUHMES神经元来建立一个培养系统,该系统允许(i)观察高度富集的神经突,(ii)为生化研究制备神经突级分的生化研究,以及(iii)轴突造口后神经酸盐标记物和代谢物的测量。luhmes的球体,在培养皿中镀以数千m的长度,而所有somata均保持聚集。这些培养物可以轻松地观察活的神经突或固定神经突。纯神经突(NOC)。通过确定其蛋白质和RNA含量来说明这种培养物的潜在应用。例如,线粒体TOM20蛋白高度丰富,而核组蛋白H3则没有。同样,在相对较高的水平上发现了线粒体编码的RNA,而在NOC中,组蛋白或神经元核标记NEUN(RBFOX3)的mRNA相对耗尽。NOC的另一种潜在用途是神经突变性的研究。为此,开发了一种量化神经突完整性的算法。使用此工具,我们发现烟酰胺的添加大大降低了神经突变性。另外,NOC中Ca 2+的螯合延迟了变性,而Calpains的抑制剂也没有作用。因此,NOC被证明适用于生化分析和在定义的切割损伤后研究变性过程。
摘要 这篇理论文章旨在发展关于在细胞水平上调节共享意向性的认识。关于共享意向性过程中的神经生物学过程的假设认为,这种前感知交流通过生态系统中的非局部神经元耦合发生,可以描述为母胎交流模型。当前的理论研究分析了文献,讨论了关于振荡对神经元时间协调影响的最新发现,以验证外部低频振荡是否只能同步来自外周和中枢神经子系统的特定局部神经元网络以调节共享意向性。该综述讨论了 4 个发现。首先,伽马振荡与局部细胞集合的时间协调有关。其次,低频脑振荡与外周和中枢神经子系统的时间协调之间存在关系。第三,δ振荡通过调节伽马活动来影响神经元活动。第四,外部 delta 和 gamma 振荡会增加皮质兴奋性。文章的结论是,delta 振荡可以调节神经系统不同子系统中的 gamma 振荡,从而提供时间网络协调。外部低频振荡器只能协调已表现出 gamma 活动的各个子系统中的相关局部神经元网络。
摘要 计算障碍是一种数学学习障碍,严重影响学生的学习成绩和日常生活中与数学相关的方面。早期诊断和根据每个案例的需求设计干预方案至关重要。从这个意义上讲,人们创建了多种技术资源来解决这两个问题。然而,很难确定它们有哪些共同的特征,哪些特征与教学适用性更相关。鉴于这种情况,本研究建议根据收件人类型、目标、格式和支持科学证据对这些资源进行分类。分类过程分为两个阶段:演绎和归纳。在第一阶段,对主要科学出版物数据库中的文献进行了系统回顾。在第二阶段,根据对出版物的回顾,确定了发现的技术资源的共同方面,并制定了最终的分类标准。
散发性克鲁特兹菲尔德 - 贾科布疾病(SCJD)是最常见的人类prion病,当时会发生细胞prion蛋白(PRP C)自发地折叠并聚集成prion族原纤维,导致致命的Neu rodegeneration中的原因。在SCJD的全基因组关联研究中,我们最近确定了基因STX6和周围周围的风险变异,有证据表明与疾病相关的大脑区域中STX6表达的因果关系增加。 STX6编码Syntaxin -6,这是一种主要参与早期内体的核心蛋白,用于反式 - 高尔基网络恢复级传输。 在这里,我们通过经典的Prion传播研究研究了STX6的遗传耗竭的小鼠模型,并通过经典的Prion传播研究研究了STX6表达在小鼠Prion疾病中的因果作用,评估了纯合和杂合Syntaxin-6敲除疾病孵化周期以及prion孵化的神经病理学的影响。 接种RML Prions后,在STX6 - / - 和STX6 + / < / div>中的孵育周期在SCJD的全基因组关联研究中,我们最近确定了基因STX6和周围周围的风险变异,有证据表明与疾病相关的大脑区域中STX6表达的因果关系增加。STX6编码Syntaxin -6,这是一种主要参与早期内体的核心蛋白,用于反式 - 高尔基网络恢复级传输。在这里,我们通过经典的Prion传播研究研究了STX6的遗传耗竭的小鼠模型,并通过经典的Prion传播研究研究了STX6表达在小鼠Prion疾病中的因果作用,评估了纯合和杂合Syntaxin-6敲除疾病孵化周期以及prion孵化的神经病理学的影响。接种RML Prions后,在STX6 - / - 和STX6 + / < / div>中的孵育周期
有条件的响应在成功的灭绝学习过程中逐渐停止。续订效应定义为当灭绝的上下文与获取不同时的恢复条件响应的恢复。已知应力激素皮质醇对灭绝记忆和联想学习有影响。在压力时序,持续时间和强度方面,已经观察到皮质醇对行为和大脑活性的不同影响。然而,在最初编码刺激结果关联对灭绝学习,更新及其行为和神经生物学相关性之前的皮质醇的影响仍然很大程度上是未知的。在我们的研究中,有60名人类参与者获得了20毫克皮质醇或安慰剂,然后学习,长大,并回顾了在不同情况下在不同背景下提出的食物刺激与随后三个任务阶段的不同结果之间的关联。在获取和灭绝阶段的学习绩效对两个治疗组都同样有益。在皮质醇组中显示出更新的续订。与安慰剂相比,在具有更新的参与者的亚组中,皮质醇治疗的参与者的灭绝学习绩效明显更好。表现出更新的参与者在回忆灭绝记忆方面遇到了一般困难,但与安慰剂相反,皮质醇组表现出与上下文有关的灭绝记忆回忆的损害。成像分析表明,在采集过程中,皮质醇在海马中的激活降低。在召回期间,皮质醇减少了腹侧前额叶皮层激活。皮质醇组还显示出在不同背景下进行灭绝学习时背外侧前额叶皮层的活化减少,但是在灭绝学习过程中,下额回学习的激活增强而没有上下文改变。综上所述,我们的发现将皮质醇作为灭绝学习和回忆记忆的有效调节剂,这也促进了更新。
来自德克萨斯州A&M 1得克萨斯州A&M 1通过的卫生研究所,由德克萨斯A&M大学,美国德克萨斯州的大学站,美国; 2美国纽约州伊萨卡市康奈尔大学营养科学系; 3美国马萨诸塞州波士顿的哈佛医学院贝丝以色列执事医学中心贝丝内分泌,糖尿病和代谢部; 4英国伦敦伦敦大学学院; 5加利福尼亚大学心理学科学系 - 美国加利福尼亚州尔湾,美国; 6Clínicade Navarra大学内分泌与营养系,西班牙帕姆普洛纳,伊迪斯纳,伊迪斯纳市; 7挪威奥斯陆奥斯陆大学营养系; 8美国农业部,美国马里兰州贝尔茨维尔; 9神经科学系,霍华德·休斯医学院,加利福尼亚大学,加利福尼亚州圣地亚哥分校; 10营养研究部,蒙德尔·埃兹国际。R&D,法国萨克莱; 11认知神经病学,德国莱比锡大学医学中心和德国莱比锡认知与脑科学研究所; 12 Zuckerman Mind Brain and Bacrumy Institute,哥伦比亚大学,纽约,纽约,美国;和13个心脏代谢部门,内分泌临床部,医学系,Karolinska Institutet,位于瑞典斯德哥尔摩的Karolinska大学医院Huddinge
大脑在性功能和行为中起着至关重要的作用。大脑的各个区域和神经回路都参与性活动的不同方面,包括性欲,唤醒,性高潮和性偏爱[1]。涉及性行为涉及的大脑的关键领域之一是,该假设控制了与繁殖有关的各种功能,例如释放调节性行为和生育能力的激素。大脑的其他区域,例如杏仁核,前额叶皮层和岛状,也参与处理性刺激并产生性反应[2]。Neu Rotransmitters多巴胺,5-羟色胺和去甲肾上腺素在性功能中也很重要,因为它们会影响情绪,动机和唤醒[3]。这些化学物质参与了大脑的奖励系统,该系统在性活动过程中被激活并可以增强性行为。研究还表明,大脑活动在具有不同性取向的个体之间会有所不同。例如,研究发现,男女同性恋者的大脑相似,而女同性恋和直男的大脑也具有某些特征[4]。这表明性偏爱至少部分受到大脑结构和功能的影响。总体而言,性大脑是一个复杂而有趣的研究领域,继续对人类的性行为和行为产生新的见解。
俄亥俄州阿克伦市 • 宾夕法尼亚州伊利市 Esper 治疗中心医疗主任 • 俄亥俄州阿克伦市 Interval Brotherhood Home 首席医疗官 • 俄亥俄州伍斯特市 STEPs 药物辅助治疗主任 • 精神病学和家庭与社区医学副临床教授
多发性硬化症(MS)是一种复杂的慢性疾病,病因未知。在大多数情况下,它被认为是中枢神经系统(CNS)的炎症性脱髓鞘和神经退行性疾病,它是通过不可预测的复发和缓解阶段的发作来表征的。该疾病通常从40岁以下的受试者开始;它在女性中的发生率更高,由于遗传和环境风险因素之间的相互作用,因此被描述为多因素障碍。不幸的是,目前尚无MS的确定治疗方法。仍然可以改变疾病的自然病史,降低复发率并减缓疾病或管理症状的进展。有限的人类中枢神经系统组织的访问速度会减慢。它限制了MS研究的进展。多年来,通过开发各种实验模型来研究这种疾病,这一限制已被部分克服。自身免疫性脱髓鞘的动物模型,例如实验性自身免疫性脑脊髓炎(EAE),病毒和毒素或转基因MS模型,代表了MS研究方法中最重要的部分。这些模型现已通过诱导的多能干细胞(IPSC)(IPSC)进行了体内研究,使用器官脑切片培养和体外进行了补充。我们将讨论在MS研究中常用的模型中,可以在体内,EX VIVO和体外进行疾病的哪些临床特征,以了解MS患者中枢神经系统中发生的神经病理事件的过程。本综述的主要目的是使读者对MS研究中使用的主要范式的全球视野,从经典动物模型到转基因小鼠以及2D和3D培养物的间距。