罗氏将与 Ascidian Therapeutics 合作,发现和开发针对神经系统疾病的新型 RNA 外显子编辑疗法,该交易价值可能高达 18 亿美元。这家总部位于马萨诸塞州波士顿的生物技术公司正在开创一种旨在重写外显子的新方法,外显子是 RNA 的编码部分,它们被拼接在一起作为信使 RNA,然后翻译成蛋白质。外显子的突变会导致 Ascidian 想要针对的功能失调的致病蛋白质。Ascidian 相信其平台可以为现有基因治疗和基因编辑技术无法解决的疾病创造疗法。许多基因的大小大且突变变异性高,使它们超出了现有基因编辑和碱基编辑方法的范围。其重点是设计和开发可以重写数千个 RNA 外显子的 RNA 外显子编辑疗法。该技术可以使其能够针对大基因和突变变异性高的基因,同时保持天然基因表达模式和水平。该公司表示,其目标是提供持久的一次性基因治疗,同时“大幅降低”与 DNA 编辑和操作相关的风险。外显子编辑分子足够小,可以装入 AAV 或其他病毒或非病毒载体,包括脂质纳米颗粒,并且这种疗法应该在“正确的时间、正确的细胞中”产生全长、功能性的蛋白质。
QS离子EDI委员会从2021年以前现有的QS Ion Athena Swan委员会演变出来。EDI委员会是一个自我评估团队,仔细审查了平等数据以促进数据驱动的政策变更。它包括来自整个研究所的学术,研究,技术人员和专业服务领域的代表,以及研究生的代表和研究生。
1系GF Ingrassia,卡塔尼亚大学,意大利卡塔尼亚95131 2 Sense Research部门,临床和运动神经科学系,UCL女王广场神经学研究所,英国伦敦WC1N 3BG,英国伦敦WC1N 3BG; d.kaski@ucl.ac.uk(D.K.); n.koohi@ucl.ac.uk(N.K。)3 Sense Departy的器官,La Sapienza,00185,意大利罗马; massimo.ralli@uniroma1.it 4耳,鼻子和喉咙单位,临床和分子科学系,马尔马尔市理工大学,意大利60020,意大利安卡纳; giox83@hotmail.com 5耳鼻喉科 - 美国纽约哥伦比亚大学的头和颈部系,美国纽约10032,美国; jk2079@columbia.edu(J.W.K. ); akl2144@cumc.columbia.edu(a.k.l.) 6耳鼻喉科系 - 德国汉诺威30625汉诺威医学院的头和颈外科手术; warnecke.athanasia@mh-Hannover.de 7多发性硬化症中心,神经病学系,韦恩州立大学,底特律,密歇根州密歇根州48201; ebernits@med.wayne.edu *通信:ariannadistadio@hotmail.com或arianna.distadio@unict.it3 Sense Departy的器官,La Sapienza,00185,意大利罗马; massimo.ralli@uniroma1.it 4耳,鼻子和喉咙单位,临床和分子科学系,马尔马尔市理工大学,意大利60020,意大利安卡纳; giox83@hotmail.com 5耳鼻喉科 - 美国纽约哥伦比亚大学的头和颈部系,美国纽约10032,美国; jk2079@columbia.edu(J.W.K.); akl2144@cumc.columbia.edu(a.k.l.)6耳鼻喉科系 - 德国汉诺威30625汉诺威医学院的头和颈外科手术; warnecke.athanasia@mh-Hannover.de 7多发性硬化症中心,神经病学系,韦恩州立大学,底特律,密歇根州密歇根州48201; ebernits@med.wayne.edu *通信:ariannadistadio@hotmail.com或arianna.distadio@unict.it
来自:Page MJ,McKenzie JE,Bossuyt PM,Boutron I,Hoffmann TC,Mulrow CD等。Prisma 2020声明:报告系统审查的最新指南。BMJ 2021; 372:n71。doi:10.1136/bmj.n71。
人工智能(AI)已成为神经病学领域的强大工具,严重影响了神经系统疾病的诊断和治疗。最近的技术突破使我们获得了与神经病学许多方面相关的大量信息。神经科学和AI拥有悠久的协作历史。在巨大的潜力上,我们遇到了与数据质量,道德和在医疗保健中应用数据科学的固有困难有关的障碍。神经系统疾病由于其复杂的表现和可变性而构成了复杂的挑战。自动化图像解释任务,AI算法准确地识别大脑结构并检测异常。这可以加速诊断并减少医疗专业人员的工作量。治疗优化受益于对不同情况和预测结果的AI模拟的好处。这些AI系统目前可以执行生物系统的许多复杂的知觉和认知能力,例如对象识别和决策。此外,AI迅速被用作神经科学研究的工具,改变了我们对大脑功能的理解。它具有彻底改变医疗保健的能力,因为我们知道它进入了一个系统,在该系统中,人类和机器人合作为患者提供更好的护理。图像分析活动,例如识别特定的大脑区域,计算随时间的计算大脑体积的变化以及检测脑扫描异常可以由AI系统自动化。这减少了放射科医生和神经科医生的压力,同时提高了诊断准确性和效率。现在很明显,与高质量的临床数据相结合的尖端人工智能模型将导致神经疾病中的预后和诊断模型增强,从而允许跨医疗保健环境的专家级临床决策辅助工具。总而言之,AI与神经病学的整合彻底改变了诊断,治疗和研究。随着AI技术的发展,他们承诺将进一步揭示神经系统疾病的复杂性,从而改善患者护理和生活质量。AI和神经病学的共生,可以瞥见创新和同情融合神经医疗保健的未来。此摘要提供了AI在神经病学及其变革潜力中的作用的简洁概述。
使用以下覆盖范围政策的说明适用于Cigna公司管理的健康福利计划。某些CIGNA公司和/或业务范围仅向客户提供利用审核服务,并且不做覆盖范围的确定。引用标准福利计划语言和覆盖范围确定不适用于这些客户。覆盖范围政策旨在为解释Cigna Companies管理的某些标准福利计划提供指导。请注意,客户的特定福利计划文件的条款[集团服务协议,覆盖范围证据,覆盖证证书,摘要计划描述(SPD)或类似计划文件]可能与这些承保范围政策所基于的标准福利计划有很大差异。例如,客户的福利计划文件可能包含与覆盖策略中涉及的主题相关的特定排除。发生冲突时,客户的福利计划文件始终取代覆盖策略中的信息。在没有控制联邦或州承保范围授权的情况下,福利最终取决于适用的福利计划文件的条款。在每个特定实例中的覆盖范围确定需要考虑1)根据服务日期生效的适用福利计划文件的条款; 2)任何适用的法律/法规; 3)任何相关的附带资料材料,包括覆盖范围政策; 4)特定情况的具体事实。应自行审查每个覆盖范围请求。医疗总监有望行使临床判断,并在做出个人覆盖范围确定方面有酌处权。覆盖范围政策与健康福利计划的管理仅有关。覆盖范围政策不是治疗的建议,绝不应用作治疗指南。在某些市场中,可以使用授权的供应商指南来支持医疗必要性和其他承保范围的确定。
使用以下覆盖范围政策的说明适用于Cigna公司管理的健康福利计划。某些CIGNA公司和/或业务范围仅向客户提供利用审核服务,并且不做覆盖范围的确定。引用标准福利计划语言和覆盖范围确定不适用于这些客户。覆盖范围政策旨在为解释Cigna Companies管理的某些标准福利计划提供指导。请注意,客户的特定福利计划文件的条款[集团服务协议,覆盖范围证据,覆盖证证书,摘要计划描述(SPD)或类似计划文件]可能与这些承保范围政策所基于的标准福利计划有很大差异。例如,客户的福利计划文件可能包含与覆盖策略中涉及的主题相关的特定排除。发生冲突时,客户的福利计划文件始终取代覆盖策略中的信息。在没有控制联邦或州承保范围授权的情况下,福利最终取决于适用的福利计划文件的条款。在每个特定实例中的覆盖范围确定需要考虑1)根据服务日期生效的适用福利计划文件的条款; 2)任何适用的法律/法规; 3)任何相关的附带资料材料,包括覆盖范围政策; 4)特定情况的具体事实。应自行审查每个覆盖范围请求。医疗总监有望行使临床判断,并在做出个人覆盖范围确定方面有酌处权。覆盖范围政策与健康福利计划的管理仅有关。覆盖范围政策不是治疗的建议,绝不应用作治疗指南。在某些市场中,可以使用授权的供应商指南来支持医疗必要性和其他承保范围的确定。
淀粉样蛋白与三种主要疾病有关:患有阿尔茨海默氏病的Aβ,患有帕金森氏病的α-鼻核蛋白和2型糖尿病的氨基蛋白(又名IAPP)。这些淀粉样蛋白均形成可溶性低聚物,原纤维和跨膜离子通道。尽管已经确定了一些原纤维结构,但对毒性可溶性寡聚物和跨膜组件的结构的了解少得多。多态性是主要障碍。淀粉样蛋白组件是动态的。有时它们是无序的,形成组件的肽的数量通常会变化,即使它们的二级结构随时间和环境变化,而且通常同时存在多种形式。我们不知道哪些组件是至关重要的,哪些是致病性的。我们的团队试图通过开发突触核蛋白和β的原子尺度模型来填补这一空白。仅Aβ42同工型形成神经元中的离散通道。 GM1神经节剂增强了其毒性,这些神经节蛋白包括我们最新一代的β-桶模型。 我们的模型具有径向和通常的P2对称性,只有一个或两个肽构象。限制了可能的结构数量的约束。 它们与公认的β-桶结构理论一致,许多NMR,显微镜,生物物理和生化研究以及既定的分子建模原理和技术。 可行模型的数量很大,因为存在许多不同的组件。仅Aβ42同工型形成神经元中的离散通道。GM1神经节剂增强了其毒性,这些神经节蛋白包括我们最新一代的β-桶模型。我们的模型具有径向和通常的P2对称性,只有一个或两个肽构象。限制了可能的结构数量的约束。它们与公认的β-桶结构理论一致,许多NMR,显微镜,生物物理和生化研究以及既定的分子建模原理和技术。可行模型的数量很大,因为存在许多不同的组件。此外,我们正在建模Aβ42和α-突触核蛋白如何通过周围的突触传播过程中参与突触传播过程中融合孔的形成,并在周围的Snare Syn Aptotagmins施加膜张力并在复合物中进行复杂时大量扩展。