记忆回忆和自愿行为通常被认为是与外部刺激无关的自发产生。尽管它们是我们神经元的产物,但在神经元层面上很少在人类身上出现。在这里,我回顾了从独特的神经外科手术机会中收集到的见解,这些机会记录和刺激了能够表达自己的想法、记忆和愿望的人的单神经元活动。我讨论了人类回忆的主观体验和自愿行为的主观体验来自两个内部神经元发生器的活动的证据,前者来自内侧颞叶再激活,后者来自额顶叶预激活。我描述了这些发生器及其相互作用的特性,从而能够灵活地招募基于记忆的行动选择以及招募基于行动的计划以在记忆中表示概念知识。这两个内部发生器都以令人惊讶的明确但不同的神经元代码运行,这些代码似乎伴随着不同的单神经元活动而出现,通常在参与者报告有意识之前观察到。我讨论了基于这些代码的行为预测及其调节的潜力。通过增强、开始或删除特定的、选定的内容来编辑人类记忆和意志的前景带来了治疗可能性和伦理问题。
记忆回忆和自愿行为通常被认为是与外部刺激无关的自发产生。尽管它们是我们神经元的产物,但在神经元层面上很少在人类身上出现。在这里,我回顾了从独特的神经外科手术机会中收集到的见解,这些机会记录和刺激了能够表达自己的想法、记忆和愿望的人的单神经元活动。我讨论了人类回忆的主观体验和自愿行为的主观体验来自两个内部神经元发生器的活动的证据,前者来自内侧颞叶再激活,后者来自额顶叶预激活。我描述了这些发生器及其相互作用的特性,从而能够灵活地招募基于记忆的行动选择以及招募基于行动的计划以在记忆中表示概念知识。这两个内部发生器都以令人惊讶的明确但不同的神经元代码运行,这些代码似乎伴随着不同的单神经元活动而出现,通常在参与者报告有意识之前观察到。我讨论了基于这些代码的行为预测及其调节的潜力。通过增强、开始或删除特定的、选定的内容来编辑人类记忆和意志的前景带来了治疗可能性和伦理问题。
人体由四种组织组成:结缔组织、上皮组织、肌肉组织和神经组织。结缔组织结合、分离和连接其他类型的组织。结缔组织组成人体的骨骼、血液、韧带和肌腱。上皮组织形成皮肤的外层并覆盖体腔,例如消化系统和呼吸系统。肌肉组织形成移动身体、使心脏跳动和将食物通过消化道的肌肉。最后,神经组织构成神经系统,包括由大脑和脊髓组成的中枢神经系统,以及由连接身体肌肉和器官的神经组织组成的周围神经系统。(神经系统的划分将在第 4 章中详细讨论。)
摘要:在处理智能系统的算法方面时,与生物学大脑的类比一直很有吸引力,并且经常具有双重功能。一方面,它一直是其设计灵感的有效来源,另一方面,它被用作其成功的正当化来源,尤其是在深度学习(DL)模型的情况下。近年来,大脑的灵感失去了对自己的第一个角色的控制,但它继续提出第二个角色,尽管我们认为它也变得越来越容易辩护。在合唱之外,有一些理论上的建议,而是识别DL和人类认知之间的重要分界线,甚至是不可忽视的。在本文中,我们认为,矛盾的是,深神经模型开发人员对生物神经元的功能的部分冷漠是其成功的原因之一,并促进了务实的机会主义态度。我们认为,甚至有可能瞥见另一种类型的生物学类比,因为现代DL开发中的启发式方法本质上是与自然进化的相似之处。
信用:左上:少突胶细胞 - 彼得·布罗菲教授;右:星形胶质细胞和少突胶质细胞 - Yirui Sun归因:Creative Commons 4.0 International(CC By 4.0) - 井片左下:Francesca Nicholls; Rigiht:小胶质细胞 - NIH(CC PDM 1.0)
轴突非常复杂,分布广泛,可以形成细小的分支,通过动作电位传输信号。• 轴突的长度可以从微米到米不等,并且可以遍布整个大脑。• 轴突的分支模式不同,因为分支模式与树突相比变化更大。• 细胞轴突的密度和分布可以跨大脑区域和大脑区域内变化,具体取决于细胞类型。例如,在人类和小鼠的视觉皮层中,相同细胞类型的轴突会因胞体位于皮层的哪个皮层层而有很大差异。皮层层是大脑外皮层的不同层,从第 1 层(浅层)到第 6 层(深层)排列。• 轴突可以包裹在髓鞘中,髓鞘就像电线上的绝缘层。这可以提高动作电位的速度。在大脑区域之间移动的轴突通常有髓鞘,可能会提高信号传输的速度和可靠性。 • 下图是同一个人类神经元,但标出了轴突。请注意,与树突相比,轴突要细得多。
•动作电位 - 一种电荷,该电荷从轴突沿细胞体驱逐到轴突末端,在该电荷触发或抑制神经递质的释放•轴突•轴突 - 轴突 - 神经元的一部分,该神经元将信号从细胞体和靶细胞/轴突末端 - 轴突末端 - 与轴突接触的轴突末端,使其与另一个细胞接触。神经递质释放•细胞体的点 - 神经元的一部分决定是否沿轴突•dendrite发送信号 - 神经元的一部分是从其他神经元接收信号的一部分。• excitatory neuron – a neuron whose neurotransmitter stimulates another neuron, increasing the probability that the target neuron will fire an action potential • inhibitory neuron – a neuron whose neurotransmitter inhibits another neuron, decreasing the probability that the target neuron will fire an action potential • neuromuscular junction – the special synapse onto a muscle • neuron – nerve cell专门用于发送信息;其特征是长长的纤维投影称为轴突,较短的分支样突起,称为树突•神经递质 - 神经元在突触时神经元释放的化学物质,以将信号发送给附近的邻近神经元的树突;与树突上的特殊受体分子结合以产生信号•突触后神经元 - 树突接收神经递质
果蝇被广泛用作所有生物医学研究领域的模型生物。在神经科学领域,人们利用这种小果蝇获得了大量信息,包括识别调节行为的神经回路、揭示其遗传基础以及所涉及的分子机制。尽管有大量遗传工具可用于操纵和推断神经元活动,但对果蝇神经元电特性的直接测量却落后了。这是因为在果蝇中枢神经元等小细胞中进行电记录非常复杂。膜片钳技术提供了直接测量果蝇神经元电特性的独特可能性。此分步方案提供了掌握此技术的详细建议。
可兴奋细胞(如神经元和肌肉细胞)的膜电位经历了由一系列配体和电压门控离子通道介导的丰富动态变化。尤其是中枢神经元,它们是信息、感知和整合由突触输入介导的多个亚阈值电流并将其转化为动作电位模式的出色计算机。电生理学包括一组允许直接测量电信号的技术。有许多不同的电生理学方法,但由于果蝇神经元很小,全细胞膜片钳技术是记录来自单个中枢神经元的电信号的唯一适用方法。在这里,我们提供了果蝇膜片钳电生理学的背景知识,并介绍了解剖幼虫和成年大脑的方案,以及实现已识别神经元类型的全细胞膜片钳记录的方案。膜片钳是一种劳动密集型技术,需要大量练习才能成为专家;因此,应该预计学习曲线会很陡峭。然而,我们希望分享和传播神经元放电的即时满足感,因为需要更多的果蝇膜片钳来研究迄今为止未知的许多果蝇神经元类型的电特征。
大多数人类是昼行性的,这意味着他们通常白天醒着,晚上睡觉。然而,许多其他动物并非如此,它们喜欢夜生活,全天休息。那么大脑如何决定我们是夜行性还是昼行性呢?许多生理过程,如清醒或睡眠,都与白天和黑夜的时间同步。这些活动由称为昼夜节律钟的分子振荡器调节,它由基因转录和蛋白质翻译的正反馈和负反馈回路组成,使过程以〜24 小时的周期发生。就像管弦乐队中的乐器一样,这些遍布全身的时钟发出的“滴答声”必须协调一致,以协调不同器官的活动。对于哺乳动物来说,这首交响曲的指挥是“主昼夜节律时钟”,它位于视交叉上核 (SCN),这是大脑下丘脑区域内约 20,000 个神经元组成的一个集群。SCN 中的每个神经元都会根据昼夜循环调整其电活动,最终产生身体遵循的节律输入(Reppert 和 Weaver,2002 年)。