自2019年底SARS-COV-2首次感染了人类以来,Covid-19的大流行就已经破坏了健康和经济影响。迄今为止,Covid-19在全球造成了超过350万人的死亡,仅在美国就有超过580 000人死亡。 [1]尽管行为和接触跟踪干预措施减慢了扩散,并且在某些地区可以使用疫苗,但在世界许多地区,病例数仍然很高。 在资源有限和获得医疗保健的地区,SARS-COV-2的持续传播将继续存在明显的有害。 无症状的传播率很高,缺乏有效的治疗使该病毒难以固定。 [2]因此,有效疫苗的部署是结束COVID-19-19大流行的关键全球健康优先事项。 此外,Covid-19还迫使开发疫苗平台的重要性,这些疫苗平台可以迅速适应以应对未来的大流行。迄今为止,Covid-19在全球造成了超过350万人的死亡,仅在美国就有超过580 000人死亡。[1]尽管行为和接触跟踪干预措施减慢了扩散,并且在某些地区可以使用疫苗,但在世界许多地区,病例数仍然很高。在资源有限和获得医疗保健的地区,SARS-COV-2的持续传播将继续存在明显的有害。无症状的传播率很高,缺乏有效的治疗使该病毒难以固定。 [2]因此,有效疫苗的部署是结束COVID-19-19大流行的关键全球健康优先事项。 此外,Covid-19还迫使开发疫苗平台的重要性,这些疫苗平台可以迅速适应以应对未来的大流行。无症状的传播率很高,缺乏有效的治疗使该病毒难以固定。[2]因此,有效疫苗的部署是结束COVID-19-19大流行的关键全球健康优先事项。此外,Covid-19还迫使开发疫苗平台的重要性,这些疫苗平台可以迅速适应以应对未来的大流行。
疫苗对恶性疟原虫网状细胞结合蛋白同源物5(PFRH5)的靶向寄生虫生命周期的血液阶段。pFRH5有可能触发菌株转移抗体的产生,并在临床前和早期临床研究中证明了其功效。疫苗诱导的单克隆抗体(mAb)对PFRH5表现出对来自不同地理区域的恶性疟原虫实验室菌株的有希望的结果。在这里,我们评估了疫苗诱导的抗PFRH5 mAb对遗传多样的恶性疟原虫临床分离株的功能影响。我们使用了先前从英国成年PFRH5疫苗的单个B细胞中分离出来的mAB,并使用了前体内生长抑制活性(GIA)测定法来评估其针对恶性疟原虫临床分离株的功效。下一代测序(NGS)用于评估恶性疟原虫临床分离株中遗传多样性的广度,并推断抗体易感性涉及的基因型/表型关系。我们显示了三个主要GIA组的临床分离株的剂量依赖性抑制:高,中和低。除一个分离株外,我们的数据显示,恶性疟原虫临床分离株和3D7参考菌株之间的mAb GIA谱没有显着差异,该菌株携带了疫苗等位基因。我们还观察到了MAB组合的添加剂关系,因此GIA-LOW和GIA-MEDIUM抗体的组合导致GIA增加,对多克隆IgG反应中特定克隆的贡献具有重要意义。虽然我们的NGS分析显示了PFRH5基因中新型突变的发生,但预计这些突变对已知MAB的抗原结构或识别几乎没有功能影响。我们目前的发现补充了关于抗PFRH5 mAb的菌株超然潜力的早期报道,据我们所知,这是关于恶性疟原虫临床分离株易感性的第一份报告,从自然感染对疫苗诱导的人类MAB对PFRH5的敏感性。
一种细菌细胞外囊泡的鼻内疫苗针对SARS-COV-2预防疾病,并引起对野生型和三角洲变种的中和抗体,linglei jiang#1,Tom A.P.Driedonks#1,Wouter S.P.Jong†,SantoshDhakal§,H。Bart Van den Berg vanJong†,SantoshDhakal§,H。Bart Van den Berg van
ESC Swab Neutralizing Rinse Solution 10 mL 100 test 85601 ESC Swab Neutralizing Rinse Solution 5 mL 100 test 85602 ESC Swab Buffered Peptone Water 10 mL 100 test 85603 ESC Swab Buffered Peptone Water 5 mL 100 test 85604 ESC Swab D/E Neutralizing Broth 10 mL 100 test 85605 ESC Swab D/E Neutralizing Broth 5 mL 100 test 85606 ESC SWAB LETHEEN肉汤10毫升100测试85607 ESC SWAB LETHEEN肉汤5毫升100测试85608 ESC SWAB最大恢复稀释剂10毫升10 ml 100测试85609 ESC SWAB最大恢复稀释剂5 ml 100测试85610 85610采样模板10 CM x 10 cm selile 60 Units 9676662
1 芬兰赫尔辛基芬兰健康与福利研究所健康安全部微生物学专家组,2 芬兰赫尔辛基芬兰健康与福利研究所健康安全部传染病控制与疫苗接种组,3 芬兰赫尔辛基芬兰健康与福利研究所知识经纪人部数据与分析组,4 芬兰图尔库图尔库大学医院儿科与青少年医学系,5 芬兰图尔库图尔库大学医院临床微生物学,6 芬兰图尔库图尔库大学生物医学研究所免疫遗传学实验室,7 芬兰图尔库图尔库大学生物医学研究所感染与免疫组,以及 8 芬兰坦佩雷芬兰健康与福利研究所公共卫生与福利部干预组
1 Department of Clinical Laboratory, Juntendo University Hospital, Bunkyo City, Tokyo, Japan, 2 Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo City, Tokyo, Japan, 3 Medical Technology Innovation Center, Juntendo University, Bunkyo City, Tokyo, Japan, 4 Department of Research Support Utilizing Bioresource Bank, Juntendo University Graduate School of Medicine, Bunkyo日本东京市,东京市,国民医学院5号急诊医学系,日本东京市邦基约市,6个心血管生物学和医学系6,邦基约市医学院,邦基约市,东京,日本东京,日本,日本7号医学院,医学院7号,日本班克尤尔,日本教职,bunkyo City,bunkyo City,bunkyo City,juntery doksinestir,junty dokentir of Kunkyo City,Tokykyo,tokykyo,tokyo.日本东京邦克约市医学
M.F-M。是德国Tübingen的Curevac AG的管理委员会成员和雇员。 S.R.,B.P.,N.R.,K.S。 和S.O.M. 是Curevac AG的雇员,德国Tübingen,这是一家公开上市的公司,开发了基于RNA的疫苗和免疫治疗药。 所有作者均可在公司中持有股票或股票期权。 S.R.,B.P.,N.R.,K.S.,M.F-M。发明人获得了MRNA疫苗接种及其使用的几项专利。M.F-M。是德国Tübingen的Curevac AG的管理委员会成员和雇员。S.R.,B.P.,N.R.,K.S。 和S.O.M. 是Curevac AG的雇员,德国Tübingen,这是一家公开上市的公司,开发了基于RNA的疫苗和免疫治疗药。 所有作者均可在公司中持有股票或股票期权。 S.R.,B.P.,N.R.,K.S.,M.F-M。发明人获得了MRNA疫苗接种及其使用的几项专利。S.R.,B.P.,N.R.,K.S。和S.O.M. 是Curevac AG的雇员,德国Tübingen,这是一家公开上市的公司,开发了基于RNA的疫苗和免疫治疗药。 所有作者均可在公司中持有股票或股票期权。 S.R.,B.P.,N.R.,K.S.,M.F-M。发明人获得了MRNA疫苗接种及其使用的几项专利。和S.O.M.是Curevac AG的雇员,德国Tübingen,这是一家公开上市的公司,开发了基于RNA的疫苗和免疫治疗药。所有作者均可在公司中持有股票或股票期权。S.R.,B.P.,N.R.,K.S.,M.F-M。发明人获得了MRNA疫苗接种及其使用的几项专利。S.R.,B.P.,N.R.,K.S.,M.F-M。发明人获得了MRNA疫苗接种及其使用的几项专利。
。CC-BY-ND 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。此版本的版权持有者于 2020 年 9 月 30 日发布。;https://doi.org/10.1101/2020.09.29.319061 doi: bioRxiv preprint
将AAV封装到蛋白保险库纳米颗粒中,是基因治疗中和中和抗体问题的新颖解决方案,洛根·塔拉什(Logan Thrasher Collins),1,2 Wandy Beatty,3 Buhle Moyo,4 Michele Alves-Bezerra,5 Ayrea Hurley,5 Ayrea Hurley,5 Qing Lou,6,7 Z. Hong Z. Hong Zhong Zhou,6,8 selfan selfan selfan selfan self ba,4.8 self ba,4.8 self ba,88 self lag,4,8 s selfor,4,8; Ponnazhagan,10 Randall McNally,伦纳德·罗马11号,6,11,12 David T. Curiel 2,* 1华盛顿大学生物医学工程系的华盛顿大学; 2圣路易斯辐射肿瘤学系的华盛顿大学; 3圣路易斯分子微生物学系的华盛顿大学; 4赖斯大学生物工程系; 5贝勒医学院分子生理与生物物理学系; 6加州纳米系统研究所; 7加利福尼亚大学洛杉矶大学微生物学,免疫学和分子遗传学系; 8加州大学洛杉矶材料科学与工程系; 9贝勒医学院综合生理学系,阿拉巴马大学10号伯明翰病理学系,11级金库制药,加利福尼亚大学洛杉矶分校12号洛杉矶分校生物化学系 *通讯作者。摘要:尽管腺相关病毒(AAV)作为基因疗法的分娩方式取得了巨大的成功,但它仍然遭受了人类种群中和中和抗体的高流行,这限制了可以接受潜在挽救生命的治疗方法。在这方面,AAV疗法通常也必须作为单剂量给药,因为接受该病毒的患者中和抗体会产生。规避这些问题的策略仍然有限。作为一种新颖的解决方案,我们采用了spytag-spycatcher分子胶技术来促进重组蛋白库纳米颗粒内部的AAV包装。保管库是由哺乳动物细胞产生的内源性蛋白质细胞器,因此它们被免疫系统识别为自我。因此,它们可以保护包装的分子免于中和抗体。保险库以前已被用来将药物和蛋白质输送到细胞中,但我们的研究代表了任何人首次在保管库中包装整个病毒。我们表明,我们的Vaultaav(VAAV)输送车在存在抗AAV中和血清的情况下会导致细胞。vaav被定位为一个新的基因治疗递送平台,具有克服中和抗体问题的潜力,甚至允许多种剂量给药,从而扩大了AAV治疗的范围。引言与腺相关病毒(AAV)是治疗基因递送最成功的车辆之一。在美国市场上提供了几种AAV基因疗法,包括卢克斯特纳,佐尔根斯玛,hemgenix,levidys和roctavian。正在进行1,2次AAV临床试验,3个商业参与者正在研究工程AAV的新型方法以提高功效。1,3,4尽管具有势头和强大的临床特征,但由于对载体的不良免疫学反应,AAV基因治疗领域的进展却放慢了。3,5,6大约30-60%的人口已经具有针对大多数或所有AAV血清型的抗体。3,5,6大约30-60%的人口已经具有针对大多数或所有AAV血清型的抗体。7,8这会触发免疫毒性并排除临床功效,使此类患者没有资格进行治疗。寻找规避中和抗体的方法是AAV基因治疗领域的核心挑战。
1 美国华盛顿州西雅图华盛顿大学微生物学系,2 美国华盛顿州西雅图华盛顿大学华盛顿国家灵长类动物研究中心,3 美国蒙大拿州汉密尔顿市美国国立卫生研究院落基山实验室国家过敏和传染病研究所内部研究部病毒学实验室,4 美国蒙大拿州汉密尔顿市美国国立卫生研究院落基山实验室国家过敏和传染病研究所内部研究部落基山兽医分部,5 美国华盛顿州西雅图弗雷德哈钦森癌症研究中心疫苗和传染病部,6 美国华盛顿州西雅图 HDT Bio,7 美国华盛顿大学生物化学系