粒子宇宙学的巨大成功是与当前宇宙微波背景(CMB)温度t¼2的大爆炸宇宙学的一致性。7 k,测量值ωb,标准模型(SM)中三个光中微子的存在,以及测得的氦4(4 He)和氘(d)的原始量。这些元素的形成对物理敏感,温度范围为100 keV至〜10 meV,有时从几秒钟到宇宙寿命的几分钟。原始4和D的测量达到了精度百分比,因此我们能够询问有关该时代宇宙特性并获得定量答案的问题。这样一个问题涉及宇宙“黑暗辐射”的性质。现在是通过大爆炸核合成(BBN)和CMB建立的,即早期宇宙能量密度的相当一部分是黑暗辐射的形式。SM将这种辐射解释为SM中微子,它与光子浴中的热接触直至几MeV接近温度。有重要的理由来测试这种解释。例如,在早期与SM的热接触中的其他(近)无质量状态可能会增加此深色辐射。在Lambda冷暗物质中,BBN,CMB和BARYON声学振荡(BAO)的当前95%约束。4(BBN),△n eff≲0。33(CMBþBAO用于λCDMþNEFF),
通过3×3单位矩阵形成三个质量特征(这是传播特征)的三种风味状态(弱相互作用的特征性,在实验室中可检测到的弱相互作用,在实验室中可检测到)。中微子振荡仅在三个相应的质量m 1,m 2和m 3时发生。
1. 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 5.1. 一般考虑. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
1. 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 5.1. 一般考虑. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
摘要。已知低能转移状态下的弹性中微子对电子和原子核的散射截面对中微子的电磁特性非常敏感。特别是,可以使用能量阈值非常低的液体或固体探测器有效地搜索中微子的磁矩。我们提出了一种将中微子磁矩贡献纳入凝聚态靶低能弹性中微子散射理论处理的形式。采用动态结构因子的概念来描述靶中的集体效应。用数字方法计算了超流体 4He 上氚反中微子散射的微分截面。我们发现 10 − 11 µ B 量级的中微子磁矩对截面有很强的影响。我们的结果可用于未来在液体或固体目标的低能中微子散射实验中寻找中微子磁矩。
摘要:在1930年,单个β衰减的情况极为困难。带有电荷z的元件对Z+1充电的衰减,并通过节能,需要通过能源保存,发出的电子的固定能量,而不是从零延伸到最大值的测量连续体。为了解决这个问题,沃尔夫冈·保利(Wolfgang Pauli)将他从苏黎世的著名信发送给了在图宾根(Tübingen)的一次会议,他建议在beta衰减中创建了第二个极低的粒子,即“中子”。后来,在检测到“中子”之后,Enrico Fermi称此粒子为“中微子”。在1937年,在意大利建立了新量子力学领域的三把椅子。Fermi是选拔委员会主席。令人惊讶的是,在短名单结束后 - 埃托尔·马拉纳纳(Ettore Majorana)居住在罗马一家人的一家公寓里,他申请了其中一位椅子。费米宣布他是最好的候选人,必须送给主席。Fermi成功获得了那不勒斯的第四椅。要争夺主席,Majoraana必须提交论文。这是著名的“主要中微子”出版物。他表明,狄拉克方程的解会使中性效率是粒子及其自身的反粒子,即“ ma-jorana nutrino”。如果中性效率与其反粒子不同,我们称其为“狄拉克粒子”。在1937年11月,他被任命为那不勒斯的主席。关键字:Ettore Majorana,Majoraana Neutrino,Dirac粒子,β衰减。
“我们很高兴地通知您,我们通过观察质子的逆β衰变,确实探测到了来自裂变碎片的中微子。观测到的截面与预期的六乘以十到负四十四平方厘米非常吻合。”(电报给泡利)
1 APC-巴黎大学,CNSP3,CEA/LRFU,OBServatoire de Paris,10,Rue Alice Domon,75205 Paris Paris 13,法国2,Antannarivo University,BP 5 No,Cra 3 Este No 47a -15,Bogot AZ US,Zographu GR 157 84,希腊8大西洋大学,Carrera 30 Nmero 8-49哥伦比亚 - 哥伦比亚基督教徒9,巴塞尔大学,克林斯特拉斯郡82,CH-4056 Baselland 10 12伯恩,瑞士大学11 12 5,美国13美国布里斯托尔大学,纽约州,美国纽约州11973,美国15个布加勒斯特大学,物理学院,罗马尼亚布加勒斯特,16 CEA/SACLAY,IRFU IRFU INSURCHE SURCHE LOS LOIS LOIS LOIS LOIS LOIS LOIS LOIS LOIS LOIS LOIS招聘Ecnol̴ogicas,AV。合格,40,E-28040,马德里,西班牙19 Annecy-Le-Vieux粒子物理实验室,74941 Annecy-Le-Vieux,法国20,加利福尼亚大学伯克利分校,加利福尼亚州伯克利大学,美国加利福尼亚州21加利福尼亚大学戴维斯大学,加利福尼亚州戴维斯大学,加利福尼亚22 ,美国24加州大学河滨大学,加利福尼亚大学大街900号,加利福尼亚大学92521 25加利福尼亚大学,美国加利福尼亚大学,加利福尼亚大学27,美国27,美国剑桥大学,JJ Thomson Avenue,Cambridge CB3 CB3 0HE,英国28 Brazilian Brazilian Physical Research,Rio de Janeiro and Intrams and Intrip,RJ 222222290,RIO BRAZIL INTICENT和布拉格查尔斯大学的物理学,v holeˇsoviˇck ́ACH 747/2,180 00 Prague 8-Libeˇn,捷克共和国31芝加哥大学,芝加哥,芝加哥,伊利诺伊州60637,美国