作者:G Schirò · 2020 · 被引用 4 次 — 中子通过强核力与原子核相互作用,通过偶极-偶极耦合与磁矩相互作用。... 强核力并给出 ...
cao H.B.,Chakoumakos B.C.,Andrews K.M.,Wu Y.,Riedel R.A.,Riedel R.A.,Hodges J.P.,Zhou W.,Gregory R.,Haberl B.,Haberl B.,Molaison J.J.,Lynn G.W.,需求,需求,需求,一个极端磁性中子差异的高度固定型,高纤维纤维,高纤维液,高度fllactoper 9 9
了解在极端条件下电解质混合物的局限性是确保可靠和安全的电池性能的关键。在高级表征方法中,飞行时间中子成像(TOF-NI)是独一无二的,其能力可以绘制金属套管和电池组内含H的含H的物理化学变化。该技术需要在脉冲来源中长时间暴露,这限制了其应用,特别是在低温下进行分析。为了克服这些局限性,我们在连续来源使用高占空比ni,证明了由于整体分子扩散的变化而导致电解质的物理和化学变化的能力。这项工作中描述的策略减少了所需的接触,并提供了研究电解质混合物的热稳定性的基线,从对最先进的电解质混合物的证明到电池的性能。此分析和方法适用于较广泛的应用范围以外的氢材料。
摘要。随着未来几年许多研究反应堆的逐步淘汰,小型和中型中子源的不足是可以预见的。激光驱动的中子源有可能填补这一空白,过去几年激光技术取得了巨大进步。即将推出的具有高达 10 Hz 重复率的拍瓦激光器有望大幅提高中子通量。本文开发并优化了一种装置,用于在激光驱动的中子源上进行中子共振光谱分析。然后在 PHELIX 激光系统的实验活动中对该装置进行了评估。激光强度高达 10 21 W/cm²,ns 预脉冲对比度为 10 -7,用于离子加速,结果为 (1.8±0.7)×10 8 N/sr/脉冲,相当于 4 当量的 (2.3±1.0)×10 9 N。这些脉冲经过调节、准直,并通过飞行时间法进行研究,以表征热中子谱以及信噪比。
摘要。随着对高级反应堆,关键性安全性和屏蔽应用的热中子散射数据的兴趣,评估新材料或先前评估材料的重新评估(或验证)需要新的实验数据。在三步过程中评估了新的实验数据:(1)计算声子特征,(2)从数据中计算动态结构因子(DSF),以及(3)使用实验设置来模拟实验数据。所有三个步骤都面临着挑战,从需要一般通用的材料模拟代码(可以计算Correponding DSF的处理代码)到测量数据的仪器 /梁线 /设施的详细布局。可以使用各种方法(分子动力学,密度功能理论等)计算材料的声子特征。),DSF的高实现计算和基于DSF的实验模拟对于评估的准确性至关重要。可以通过使用橡树岭国家实验室的散布中子源(SNS)开发的两个相应的代码系统来实现后两个步骤:(1)Oclimax,该程序,该程序可以计算DFT和MD模拟结果的动态结构因子,以及(2)McVine,Monte Carlo Neutron Carlo Neutron Ray-Neutrats设计的模拟实验。最近,在SNS的宽角式切碎机(ARC)和红杉仪器站测量聚乙烯和Yttrium氢化物。使用密度函数理论代码,剑桥串行总能包(Castep)来模拟这些实验,以计算其声音特征(特征值 /矢量和pdos),然后使用oclimax对其进行处理以产生DSF,并通过对MCVine的数据进行数量的量度,从而对每个仪器站产生DSF,并在每个仪器站进行了量子。与常规评估方法进行比较,将从Oclimax处理的散射数据与NJOY LEAPR模块处理的散射数据进行了比较,并且McVine模拟的结果与先前使用的简化光束线模型进行了比较。
摘要 - 已将宝石检测器和激活箔用于脉冲中子源的热束线的剂量测定。第一个是一个活跃的检测器,它利用源的脉冲性质,使用飞行技术进行测量。相同的检测器已成功地用于测量梁的轮廓。第二个是一种被动辐照方法,它独立确认了ISIS中子源的Emma和Rotax束线的测得的通量。它们具有不同的热光谱,第一个光谱是用水(300 K)和第二种液态甲烷(100 K)的。随后使用参考SRAM模块的单个事件效应测试对这两个特征的梁线进行了用于辐照微电子。表明结果是一致的,并且必须应用一个校正因子以将冷束线上的结果扩展到室温下的结果。
实时监测基础设施环境。检测方法使用一组机器学习算法来识别异常行为,然后将这些异常归类为攻击类别。响应方法使用软件定义网络来随机化 IP 地址和应用程序端口号,使攻击者对网络的了解无效并阻止成功部署攻击。
这些官能团结合极性溶剂中的高特定表面积使得变得有效的各种有机和无机污染物的吸附剂。go被认为是一种非常有前途的材料,用于治疗放射性废物和自然水,因为它具有高分子的放射性核素能力。[3] GO还被广泛研究为吸附剂的各种污染物,包括例如染料,重金属和有机物。近年来,GO也被研究以吸附三价欧盟。[3A,4]在某些研究中,欧盟(III)被认为是核废料中其他三价灯笼和静脉的化学类似物。[5]因此,了解欧盟(III)的吸附特别有用,对于开发出更有效的吸附剂来用于核废料处理。应注意的是,近年来,与石墨烯相关材料的放射性核素和重金属的吸附相关的研究领域受到多次缩回的影响(例如,请参阅[6])和广泛的校正。[7]因此,在以前的一些研究中,与GO吸附有关的一些研究受到了损害。通常仅使用GO分散体进行吸附研究,但不使用实心石墨氧化物或多层GO层压板进行。GO分散体可以沉积在合适的底物上(例如,通过自旋涂层[8]或滴铸造[9]),以制成多层薄膜。分散剂也可以被填充以制作根据预期的纸张命名的独立箔,作为论文[10]或膜。[11]多层组件是由不规则形状的和大小的go akes形成的,互相堆积了近似平行的平面内部方向。多层GO的吸附特性有望受到C-tattice中层间尺寸的影响,因为水或其他用于溶解的极性溶剂的肿胀
摘要 设计和实施用于选择性传输离子和分子种类的先进膜配方对于创造下一代燃料电池和分离装置至关重要。有必要了解与设备操作相关的时间和长度尺度上的详细传输机制,无论是在实验室模型中还是在实际操作条件下的工作系统中。中子散射技术包括准弹性中子散射、反射率和成像,在世界各地的反应堆和散裂源设施的光束线站实施。随着新的和改进的仪器设计、探测器方法、源特性和数据分析协议的出现,这些中子散射技术正在成为设计、评估和实施燃料电池和分离装置先进膜技术的主要研究工具。在这里,我们以 ILL 反应堆源(法国格勒诺布尔劳厄-朗之万研究所)和 ISIS 中子和介子散裂源(英国哈威尔科技园区)为例,描述了这些技术及其开发和实施。我们还提到了世界各地其他设施正在进行的类似开发,并描述了一些方法,例如将光学和中子拉曼散射、X 射线吸收与中子成像和断层扫描相结合,并在专门设计的燃料电池中进行此类实验,以尽可能接近实际操作条件。这些实验和研究项目将在实现和测试新的膜配方以实现高效和可持续的能源生产/转换和分离技术方面发挥关键作用。